ABSTRACT We present a suite of FIRE-2 cosmological zoom-in simulations of isolated field dwarf galaxies, all with masses of $$M_{\rm halo} \approx 10^{10}\, {\rm M}_{\odot }$$ at z = 0, across a range of dark matter models. For the first time, we compare how both self-interacting dark matter (SIDM) and/or warm dark matter (WDM) models affect the assembly histories as well as the central density structure in fully hydrodynamical simulations of dwarfs. Dwarfs with smaller stellar half-mass radii (r1/2 < 500 pc) have lower σ⋆/Vmax ratios, reinforcing the idea that smaller dwarfs may reside in haloes that are more massive than is naively expected. The majority of dwarfs simulated with self-interactions actually experience contraction of their inner density profiles with the addition of baryons relative to the cores produced in dark-matter-only runs, though the simulated dwarfs are always less centrally dense than in ΛCDM. The V1/2–r1/2 relation across all simulations is generally consistent with observations of Local Field dwarfs, though compact objects such as Tucana provide a unique challenge. Overall, the inclusion of baryons substantially reduces any distinct signatures of dark matter physics in the observable properties of dwarf galaxies. Spatially resolved rotation curves in the central regions (<400 pc) of small dwarfs could provide a way to distinguish between CDM, WDM, and SIDM, however: at the masses probed in this simulation suite, cored density profiles in dwarfs with small r1/2 values can only originate from dark matter self-interactions.
more »
« less
Cuspy dark matter density profiles in massive dwarf galaxies
ABSTRACT Rotation curves of galaxies probe their total mass distributions, including dark matter. Dwarf galaxies are excellent systems to investigate the dark matter density distribution, as they tend to have larger fractions of dark matter compared to higher mass systems. The core-cusp problem describes the discrepancy found in the slope of the dark matter density profile in the centres of galaxies (β*) between observations of dwarf galaxies (shallower cores) and dark matter-only simulations (steeper cusps). We investigate β* in six nearby spiral dwarf galaxies for which high-resolution CO J = 1–0 data were obtained with ALMA (Atacama Large Millimeter/submillimeter Array). We derive rotation curves and decompose the mass profile of the dark matter using our CO rotation curves as a tracer of the total potential and 4.5 $$\mu$$m photometry to define the stellar mass distribution. We find 〈β*〉 = 0.6 with a standard deviation of ±0.1 among the galaxies in this sample, in agreement with previous measurements in this mass range. The galaxies studied are on the high stellar mass end of dwarf galaxies and have cuspier profiles than lower mass dwarfs, in agreement with other observations. When the same definition of the slope is used, we observe steeper slopes than predicted by the FIRE and NIHAO simulations. This may signal that these relatively massive dwarfs underwent stronger gas inflows towards their centres than predicted by these simulations, that these simulations overpredict the frequency of accretion or feedback events, or that a combination of these or other effects are at work.
more »
« less
- PAR ID:
- 10363866
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 512
- Issue:
- 1
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 1012-1031
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We present predictions for high redshift (z = 2−10) galaxy populations based on the IllustrisTNG simulation suite and a full Monte Carlo dust radiative transfer post-processing. Specifically, we discuss the H α and H β + $$[\rm O \,{\small III}]$$ luminosity functions up to z = 8. The predicted H β + $$[\rm O \,{\small III}]$$ luminosity functions are consistent with present observations at z ≲ 3 with $${\lesssim} 0.1\, {\rm dex}$$ differences in luminosities. However, the predicted H α luminosity function is $${\sim }0.3\, {\rm dex}$$ dimmer than the observed one at z ≃ 2. Furthermore, we explore continuum spectral indices, the Balmer break at 4000 Å; (D4000) and the UV continuum slope β. The median D4000 versus specific star formation rate relation predicted at z = 2 is in agreement with the local calibration despite a different distribution pattern of galaxies in this plane. In addition, we reproduce the observed AUV versus β relation and explore its dependence on galaxy stellar mass, providing an explanation for the observed complexity of this relation. We also find a deficiency in heavily attenuated, UV red galaxies in the simulations. Finally, we provide predictions for the dust attenuation curves of galaxies at z = 2−6 and investigate their dependence on galaxy colours and stellar masses. The attenuation curves are steeper in galaxies at higher redshifts, with bluer colours, or with lower stellar masses. We attribute these predicted trends to dust geometry. Overall, our results are consistent with present observations of high-redshift galaxies. Future James Webb Space Telecope observations will further test these predictions.more » « less
-
null (Ed.)ABSTRACT We derive a new mass estimator that relies on internal proper motion measurements of dispersion-supported stellar systems, one that is distinct and complementary to existing estimators for line-of-sight velocities. Starting with the spherical Jeans equation, we show that there exists a radius where the mass enclosed depends only on the projected tangential velocity dispersion, assuming that the anisotropy profile slowly varies. This is well-approximated at the radius where the log-slope of the stellar tracer profile is −2: r−2. The associated mass is $$M(r_{-2}) = 2 G^{-1} \langle \sigma _{\mathcal {T}}^{2}\rangle ^{*} r_{-2}$$ and the circular velocity is $$V^{2}({r_{-2}}) = 2\langle \sigma _{\mathcal {T}}^{2}\rangle ^{*}$$. For a Plummer profile r−2 ≃ 4Re/5. Importantly, r−2 is smaller than the characteristic radius for line-of-sight velocities derived by Wolf et al. Together, the two estimators can constrain the mass profiles of dispersion-supported galaxies. We illustrate its applicability using published proper motion measurements of dwarf galaxies Draco and Sculptor, and find that they are consistent with inhabiting cuspy NFW subhaloes of the kind predicted in CDM but we cannot rule out a core. We test our combined mass estimators against previously published, non-spherical cosmological dwarf galaxy simulations done in both cold dark matter (CDM; naturally cuspy profile) and self-interacting dark matter (SIDM; cored profile). For CDM, the estimates for the dynamic rotation curves are found to be accurate to $$10\rm { per\, cent}$$ while SIDM are accurate to $$15\rm { per\, cent}$$. Unfortunately, this level of accuracy is not good enough to measure slopes at the level required to distinguish between cusps and cores of the type predicted in viable SIDM models without stronger priors. However, we find that this provides good enough accuracy to distinguish between the normalization differences predicted at small radii (r ≃ r−2 < rcore) for interesting SIDM models. As the number of galaxies with internal proper motions increases, mass estimators of this kind will enable valuable constraints on SIDM and CDM models.more » « less
-
The condensation of baryons within a dark matter (DM) halo during galaxy formation should result in some contraction of the halo as the combined system settles into equilibrium. We quantify this effect on the cuspy primordial halos predicted by DM-only simulations for the baryon distributions observed in the galaxies of the SPARC database. We find that the DM halos of high surface brightness galaxies (with Σ eff ≳ 100 L ⊙ pc −2 at 3.6 μm) experience strong contraction. Halos become more cuspy as a result of compression: the inner DM density slope increases with the baryonic surface mass density. We iteratively fit rotation curves to find the balance between initial halo parameters (constrained by abundance matching), compression, and stellar mass-to-light ratio. The resulting fits often require lower stellar masses than expected for stellar populations, particularly in galaxies with bulges: stellar mass must be reduced to make room for the DM it compresses. This trade off between dark and luminous mass is reminiscent of the cusp-core problem in dwarf galaxies, but occurs in more massive systems: the present-epoch DM halos cannot follow from cuspy primordial halos unless (1) the stellar mass-to-light ratios are systematically smaller than expected from standard stellar population synthesis models, and/or (2) there is a net outward mass redistribution from the initial cusp, even in massive galaxies widely considered to be immune from such effects.more » « less
-
Context. We make rotation curve fits to test the superfluid dark matter model. Aims. In addition to verifying that the resulting fits match the rotation curve data reasonably well, we aim to evaluate how satisfactory they are with respect to two criteria, namely, how reasonable the resulting stellar mass-to-light ratios are and whether the fits end up in the regime of superfluid dark matter where the model resembles modified Newtonian dynamics (MOND). Methods. We fitted the superfluid dark matter model to the rotation curves of 169 galaxies in the SPARC sample. Results. We found that the mass-to-light ratios obtained with superfluid dark matter are generally acceptable in terms of stellar populations. However, the best-fit mass-to-light ratios have an unnatural dependence on the size of the galaxy in that giant galaxies have systematically lower mass-to-light ratios than dwarf galaxies. A second finding is that the superfluid often fits the rotation curves best in the regime where the superfluid’s force cannot resemble that of MOND without adjusting a boundary condition separately for each galaxy. In that case, we can no longer expect superfluid dark matter to reproduce the phenomenologically observed scaling relations that make MOND appealing. If, on the other hand, we consider only solutions whose force approximates MOND well, then the total mass of the superfluid is in tension with gravitational lensing data. Conclusions. We conclude that even the best fits with superfluid dark matter are still unsatisfactory for two reasons. First, the resulting stellar mass-to-light ratios show an unnatural trend with galaxy size. Second, the fits do not end up in the regime that automatically resembles MOND, and if we force the fits to do so, the total dark matter mass is in tension with strong lensing data.more » « less
An official website of the United States government
