skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Apparent Age Dependence of the Fault Weakening Distance in Rock Friction
Abstract During rock friction experiments at large displacement, room temperature and humidity, and following a hold test, the fracture energy increases approximately as the square of the logarithm of hold duration. While it's been long known that failure strength increases with log hold time, here the slip weakening distance,dh, also increases. The weakening distance increase is large, hundreds of percent change over a few thousand seconds. The initial bare surface and simulated fault gouge experiments were conducted in rotary shear at 25 MPa normal stress, 21 MPa confining stress and at displacements greater than 100 mm. In contrast, initially bare surface experiments at 5 MPa normal stress, unconfined at displacements less than 10 mm show effectively no change indh. We attribute the difference to the presence of an appreciable shear zone that develops due to wear over significant displacements, confined at elevated normal stress. Prior published studies of sheared simulated fault gouge at short displacement show both acknowledged and unacknowledged increases indhthat may relate to our observations. Since natural faults have well‐developed shear zones, the observations have more direct relevance to earthquake nucleation than prior laboratory studies that use short displacement data and focus on frictional strength recovery alone. However, the physics underlying this increase in weakening distance are not known; candidates are compaction (Nakatani, 1998) and delocalization (Sleep et al., 2000). Additional caveats are that these are room temperature and humidity experiments, at a single normal stress that have not yet been reproduced in other laboratories.  more » « less
Award ID(s):
2054439
PAR ID:
10364123
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
127
Issue:
1
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Geological heterogeneity is abundant in crustal fault zones; however, its role in controlling the mechanical behaviour of faults is poorly constrained. Here, we present laboratory friction experiments on laterally heterogeneous faults, with patches of strong, rate-weakening quartz gouge and weak, rate-strengthening clay gouge. The experiments show that the heterogeneity leads to a significant reduction in strength and frictional stability in comparison to compositionally identical faults with homogeneously mixed gouges. We identify a combination of weakening effects, including smearing of the weak clay; differential compaction of the two gouges redistributing normal stress; and shear localization producing stress concentrations in the strong quartz patches. The results demonstrate that geological heterogeneity and its evolution can have pronounced effects on fault strength and stability and, by extension, on the occurrence of slow-slip transients versus earthquake ruptures and the characteristics of the resulting events, and should be further studied in lab experiments and earthquake source modelling. 
    more » « less
  2. Abstract We study the effects of pore fluid pressure (Pf) on the pre‐earthquake, near‐fault stress state, and 3‐D earthquake rupture dynamics through six scenarios utilizing a structural model based on the 2004Mw9.1 Sumatra‐Andaman earthquake. As pre‐earthquakePfmagnitude increases, effective normal stress and fault shear strength decrease. As a result, magnitude, slip, peak slip rate, stress drop, and rupture velocity of the scenario earthquakes decrease. Comparison of results with observations of the 2004 earthquake support that pre‐earthquakePfaverages near 97% of lithostatic pressure, leading to pre‐earthquake average shear and effective normal tractions of 4–5 and 22 MPa. The megathrust in these scenarios is weak, in terms of low mean shear traction at static failure and low dynamic friction coefficient during rupture. Apparent co‐seismic principal stress rotations and absolute post‐seismic stresses in these scenarios are consistent with the variety of observed aftershock focal mechanisms. In all scenarios, the mean apparent stress rotations are larger above than below the megathrust. Scenarios with largerPfmagnitudes exhibit lower mean apparent principal stress rotations. We further evaluate pre‐earthquakePfdepth distribution. IfPffollows a sublithostatic gradient, pre‐earthquake effective normal stress increases with depth. IfPffollows the lithostatic gradient exactly, then this normal stress is constant, shifting peak slip and peak slip rate updip. This renders constraints on near‐trench strength and constitutive behavior crucial for mitigating hazard. These scenarios provide opportunity for future calibration with site‐specific measurements to constrain dynamically plausible megathrust strength andPfgradients. 
    more » « less
  3. Abstract Elevated pore fluid pressure is proposed to contribute to slow earthquakes along shallow subduction plate boundaries. However, the processes that create high fluid pressure, disequilibrium compaction and dehydration reactions, lead to different effective stress paths in fault rocks. These paths are predicted by granular mechanics frameworks to lead to different strengths and deformation modes, yet granular mechanics do not predict their effects on fault stability. To evaluate the role of fluid overpressure on shallow megathrust strength and slip behavior, we conducted triaxial shear experiments on chlorite and celadonite rich gouge layers. Experiments were conducted at constant temperature (130 and 100°C), confining pressure (130 and 140 MPa), and pore fluid pressures (between 10 and 120 MPa). Fluid overpressure due to disequilibrium compaction was simulated by increasing confining and pore fluid pressure synchronously without exceeding the target effective pressure, whereas overpressure due to dehydration reactions was simulated by first loading the sample to a target isotropic effective pressure and then increasing pore fluid pressure to reduce the effective pressure. We find that the effects of fluid pressure and stress path on the mechanical behavior of the chlorite and celadonite gouges can generally be described using the critical state soil mechanics (CSSM) framework. However, path effects are more pronounced and persist to greater displacements in chlorite because its microstructure is more influenced by stress path. Due to its effects on microstructure, the stress path also imparts greater control on the rate‐dependence of chlorite strength, which is not predicted by CSSM. 
    more » « less
  4. Deformation experiments on hematite characterize its slip‐rate dependent frictional properties and deformation mechanisms. These data inform interpretations of slip behavior from exhumed hematite‐coated faults and present‐day deformation at depth. We used a rotary‐shear apparatus to conduct single‐velocity and velocity‐step experiments on polycrystalline specular hematite rock (∼17 μm average plate thickness) at slip rates of 0.85 μm/s to 320 mm/s, displacements of primarily 1–3 cm and up to 45 cm, and normal stresses of 5 and 8.5 MPa. The average coefficient of friction is 0.70; velocity‐step experiments indicate velocity‐strengthening to velocity‐neutral behavior at rates <1 mm/s. Scanning electron microscopy showed experimentally generated faults develop in a semi‐continuous, thin layer of red hematite gouge. Angular gouge particles have an average diameter of ∼0.7 μm, and grain size reduction during slip yields a factor of 10–100 increase in surface area. Hematite is amenable to (U‐Th)/He thermochronometry, which can quantify fault‐related thermal and mechanical processes. Comparison of hematite (U‐Th)/He dates from the undeformed material and experimentally produced gouge indicates He loss occurs during comminution at slow deformation rates without an associated temperature rise required for diffusive loss. Our results imply that, in natural fault rocks, deformation localizes within coarse‐grained hematite by stable sliding, and that hematite (U‐Th)/He dates acquired from ultracataclasite or highly comminuted gouge reflect minor He loss unrelated to thermal processes. Consequently, the magnitude of temperature rise and associated thermal resetting in hematite‐bearing fault rocks based on (U‐Th)/He thermochronometry may be overestimated if only diffusive loss of He is considered. 
    more » « less
  5. Abstract Faults are the products of wear processes acting at a range of scales from nanometers to kilometers. Grooves produced by wear are a first‐order observable feature of preserved surfaces. However, their interpretation is limited by the complex geological histories of natural faults. Here we explore wear processes on faults by forensically examining a large‐scale controlled, laboratory fault which has a maximum offset between the sides of 42 mm and has been reset multiple times for a cumulative slip of approximately 140 mm. We find that on both sides of the fault scratches are formed with lengths that are longer than the maximum offset but less than the cumulative slip. The grooves are explained as a result of interaction with detached gouge rather than as toolmarks produced by an intact protrusion on one side of the fault. The density of grooves increases with normal stress. The experiment has a range of stress of 1–20 MPa and shows a density of 10 grooves/m/MPa in this range. This value is consistent with recent inferences of stress‐dependent earthquake fracture energy of 0.2 J/m2/MPa. At normal stresses above 20 MPa, the grooves are likely to coalesce into a corrugated surface that more closely resembles mature faults. Groove density therefore appears to be an attractive target for field studies aiming to determine the distribution of normal stress on faults. At low stresses the groove spacing can be measured and contrasted with areas where high stresses produce a corrugated surface. 
    more » « less