skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-Thermal Annealing of Gamma Irradiated GaN HEMTs with Electron Wind Force
Radiation damage mitigation in electronics remains a challenge because the only established technique, thermal annealing, does not guarantee a favorable outcome. In this study, a non-thermal annealing technique is presented, where electron momentum from very short duration and high current density pulses is used to target and mobilize the defects. The technique is demonstrated on 60 Co gamma irradiated (5 × 10 6 rad dose and 180 × 10 3 rad h −1 dose rate) GaN high electron mobility transistors. The saturation current and maximum transconductance were fully and the threshold voltage was partially recovered at 30 °C or less. In comparison, thermal annealing at 300 °C mostly worsened the post-irradiation characteristics. Raman spectroscopy showed an increase in defects that reduce the 2-dimensional electron gas (2DEG) concentration and increase the carrier scattering. Since the electron momentum force is not applicable to the polymeric surface passivation, the proposed technique could not recover the gate leakage current, but performed better than thermal annealing. The findings of this study may benefit the mitigation of some forms of radiation damage in electronics that are difficult to achieve with thermal annealing.  more » « less
Award ID(s):
2015795
PAR ID:
10399316
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ECS Journal of Solid State Science and Technology
Volume:
11
Issue:
7
ISSN:
2162-8769
Page Range / eLocation ID:
075002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report thermal and mechanical responses accompanying electrical characteristics of depletion mode GaN high electron mobility transistors exposed to gamma radiation up to 107rads. Changes in the lattice strain and temperature were simultaneously characterized by changes in the phonon frequency of E2(high) and A1(LO) from the on-state and unpowered/pinched off reference states. Lower doses of radiation improved electrical properties; however, degradation initiated at about 106rads. We observed about 16% decrease in the saturation current and 6% decrease in the transconductance at the highest dose. However, a leakage current increase by three orders of magnitude was the most notable radiation effect. We observed temperature increase by 40% and mechanical stress increase by a factor of three at a dose of 107rads compared to the pristine devices. Spatial mapping of mechanical stress along the channel identifies the gate region as a mechanically affected area, whereas the thermal degradation was mostly uniform. Transmission electron microscopy showed contrast changes reflecting a high vacancy concentration in the gate region. These findings suggest that localized stress (mechanical hotspots) may increase vulnerability to radiation damage by accommodating higher concentration of defects that promote the leakage current. 
    more » « less
  2. Abstract 17 MeV proton irradiation at fluences from 3–7 × 1013cm−2of vertical geometry NiO/β-Ga2O3heterojunction rectifiers produced carrier removal rates in the range 120–150 cm−1in the drift region. The forward current density decreased by up to 2 orders of magnitude for the highest fluence, while the reverse leakage current increased by a factor of ∼20. Low-temperature annealing methods are of interest for mitigating radiation damage in such devices where thermal annealing is not feasible at the temperatures needed to remove defects. While thermal annealing has previously been shown to produce a limited recovery of the damage under these conditions, athermal annealing by minority carrier injection from NiO into the Ga2O3has not previously been attempted. Forward bias annealing produced an increase in forward current and a partial recovery of the proton-induced damage. Since the minority carrier diffusion length is 150–200 nm in proton irradiated Ga2O3, recombination-enhanced annealing of point defects cannot be the mechanism for this recovery, and we suggest that electron wind force annealing occurs. 
    more » « less
  3. Thermal annealing is commonly used in fabrication processing and/or performance enhancement of electronic and opto-electronic devices. In this study, we investigate an alternative approach, where high current density pulses are used instead of high temperature. The basic premise is that the electron wind force, resulting from the momentum loss of high-energy electrons at defect sites, is capable of mobilizing internal defects. The proposed technique is demonstrated on commercially available optoelectronic devices with two different initial conditions. The first study involved a thermally degraded edge-emitting laser diode. About 90% of the resulting increase in forward current was mitigated by the proposed annealing technique where very low duty cycle was used to suppress any temperature rise. The second study was more challenging, where a pristine vertical-cavity surface-emitting laser (VCSEL) was subjected to similar processing to see if the technique can enhance performance. Encouragingly, this treatment yielded a notable improvement of over 20% in the forward current. These findings underscore the potential of electropulsing as an efficient in-operando technique for damage recovery and performance enhancement in optoelectronic devices. 
    more » « less
  4. Abstract Defect mitigation of electronic devices is conventionally achieved using thermal annealing. To mobilize the defects, very high temperatures are necessary. Since thermal diffusion is random in nature, the process may take a prolonged period of time. In contrast, we demonstrate a room temperature annealing technique that takes only a few seconds. The fundamental mechanism is defect mobilization by atomic scale mechanical force originating from very high current density but low duty cycle electrical pulses. The high-energy electrons lose their momentum upon collision with the defects, yet the low duty cycle suppresses any heat accumulation to keep the temperature ambient. For a 7 × 105A cm−2pulsed current, we report an approximately 26% reduction in specific on-resistance, a 50% increase of the rectification ratio with a lower ideality factor, and reverse leakage current for as-fabricated vertical geometry GaN p–n diodes. We characterize the microscopic defect density of the devices before and after the room temperature processing to explain the improvement in the electrical characteristics. Raman analysis reveals an improvement in the crystallinity of the GaN layer and an approximately 40% relaxation of any post-fabrication residual strain compared to the as-received sample. Cross-sectional transmission electron microscopy (TEM) images and geometric phase analysis results of high-resolution TEM images further confirm the effectiveness of the proposed room temperature annealing technique to mitigate defects in the device. No detrimental effect, such as diffusion and/or segregation of elements, is observed as a result of applying a high-density pulsed current, as confirmed by energy dispersive x-ray spectroscopy mapping. 
    more » « less
  5. Abstract Radiation damage exerts a fundamental control on He diffusion in zircon, which manifests as correlations between (U‐Th)/He date and effective uranium concentration. These correlations can be exploited with modeling to explore long‐term thermal histories. This manuscript focuses on one such model, the zircon radiation damage accumulation and annealing model (ZRDAAM) of Guenthner et al. (2013), https://doi.org/10.2475/03.2013.01, by integrating newly defined alpha damage annealing kinetics measured by Ginster et al. (2019), https://doi.org/10.1016/j.gca.2019.01.033, into ZRDAAM. I explore several consequences of this alpha damage annealing model as it relates to (U‐Th)/He date‐effective uranium (eU) correlations, using representative time‐temperature paths and previously published results. Comparison between the current version of ZRDAAM, which uses fission track annealing, and the new annealing model demonstrates that, for thermal histories with prolonged periods at low temperatures (<50°C), alpha dose annealing kinetics yield slightly younger model dates at low to moderate eU concentrations, older dates at moderate to high eU, and substantially younger dates at the highest eU concentrations. The absolute eU concentrations over which the differences are observed varies for a given thermal history, so these ranges should be interpreted as relative or proportional. Younger model dates at high eU in most thermal histories result from lower amounts of annealing that occur with the Ginster et al. (2019) alpha dose annealing kinetics. This annealing model comparison illustrates that the choice of annealing kinetics has the greatest influence over model output for thermal histories involving either prolonged time periods in the 200–300°C temperature window, or a late‐stage reheating event. 
    more » « less