skip to main content


Title: Mechanically robust hydrophobized double network hydrogels and their fundamental salt transport properties
Abstract

Water swollen polymer networks are attractive for applications ranging from tissue regeneration to water purification. For water purification, charged polymers provide excellent ion separation properties. However, many ion exchange membranes (IEMs) are brittle, necessitating the use of thick support materials that ultimately decrease throughput. To this end, novel double network hydrogels (DNHs) with variable water content are prepared and characterized in terms of mechanical and ion transport properties to evaluate their potential utility as tough membrane materials. The first network contains fixed anionic charges, while the other is comprised of a copolymer with varied ratios of hydrophobic ethyl acrylate (EA) and hydrophilic dimethyl acrylamide (DMA) repeat units. Characterization of freestanding DNH films reveals a reduction in water content from 88 to 53 wt% and a simultaneous increase in ultimate stress and strain by ~3.5× and ~4.5×, respectively, for 95%/5% EA/DMA, relative to 100% DMA. Fundamental salt transport properties relevant to water purification, including permeability, solubility, and diffusivity, are measured and systematically compared with conventional membrane materials to inform the development of DNHs for membrane applications. The ability to simultaneously reduce water content and increase mechanical integrity highlights the potential of DNHs as a synthetic platform for future membrane applications.

 
more » « less
Award ID(s):
2045336
NSF-PAR ID:
10365396
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
59
Issue:
21
ISSN:
2642-4150
Page Range / eLocation ID:
p. 2581-2589
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Water pollution is a major global challenge, as conventional polymeric membranes are not adequate for water treatment anymore. Among emerging materials for water treatment, composite membranes are promising, as they have simultaneously improved water permeation and ions rejection. Recently, a new family of 2D materials called MXenes has attracted considerable attention due to their appealing properties and wide applications. MXenes can be incorporated into many polymeric materials due to their high compatibility. MXenes/polymer composite membranes have been found to have appealing electrical, thermal, mechanical, and transport properties, because of strong interactions between polymer chains and surface functional groups of MXenes and the selective nanochannels that are created. This article reviews advances made in the area of ion‐selective MXene‐based membranes for water purification. It puts the advances into perspective and provides prospects. MXenes’ properties and synthesis methods are briefly described. Strategies for the preparation of MXene‐based membranes including mixed‐matrix membranes, thin‐film nanocomposite membranes, and laminated membranes are reviewed. Recent advances in ion‐separation and water‐desalination MXene‐based membranes are elucidated. The dependence of ion‐separation performance of the membranes on fabrication techniques, MXene's interlayer spacing, and MXene's various surface terminations are elucidated. Finally, opportunities and challenges in ion‐selective MXene‐based membranes are discussed.

     
    more » « less
  2. null (Ed.)
    The search for alternative feedstocks to replace petrochemical polymers has centered on plant-derived monomer feedstocks. Alternatives to agricultural feedstock production should also be pursued, especially considering the ecological damage caused by modern agricultural practices. Herein, l -tyrosine produced on an industrial scale by E. coli was derivatized with olefins to give tetraallyltyrosine. Tetraallyltyrosine was subsequently copolymerized via its inverse vulcanization with industrial by-product elemental sulfur in two different comonomer ratios to afford highly-crosslinked network copolymers TTSx ( x = wt% sulfur in monomer feed). TTSx copolymers were characterized by infrared spectroscopy, elemental analysis, thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis (DMA). DMA was employed to assess the viscoelastic properties of TTSx through the temperature dependence of the storage modulus, loss modulus and energy damping ability. Stress–strain analysis revealed that the flexural strength of TTSx copolymers (>6.8 MPa) is more than 3 MPa higher than flexural strengths for previously-tested inverse vulcanized biopolymer derivatives, and more than twice the flexural strength of some Portland cement compositions (which range from 3–5 MPa). Despite the high tyrosine content (50–70 wt%) in TTSx , the materials show no water-induced swelling or water uptake after being submerged for 24 h. More impressively, TTSx copolymers are highly resistant to oxidizing acid, with no deterioration of mechanical properties even after soaking in 0.5 M sulfuric acid for 24 h. The demonstration that these durable, chemically-resistant TTSx copolymers can be prepared from industrial by-product and microbially-produced monomers via a 100% atom-economical inverse vulcanization process portends their potential utility as sustainable surrogates for less ecofriendly materials. 
    more » « less
  3. Wetting and dewetting behavior in channel-confined hydrophobic volumes is used in biological membranes to effect selective ion/molecular transport. Artificial biomimetic hydrophobic nanopores have been devised utilizing wetting and dewetting, however, tunable mass transport control utilizing multiple transport modes is required for applications such as controllable release/transport, water separation/purification and energy conversion. Here, we investigate the potential-induced wetting and dewetting behavior in a pH-responsive membrane composed of a polystyrene- b -poly(4-vinylpyridine) (PS- b -P4VP) block copolymer (BCP) when fabricated as a hierarchically-organized sandwich structure on a nanopore electrode array (NEA), i.e. BCP@NEA. At pH < p K a (P4VP) (p K a ∼ 4.8), the BCP acts as an anion-exchange membrane due to the hydrophilic, protonated P4VP cylindrical nanodomains, but at pH > p K a (P4VP), the P4VP domains exhibit charge-neutral, hydrophobic and collapsed structures, blocking mass transport via the hydrophobic membrane. However, when originally prepared in a dewetted condition, mass transport in the BCP membrane may be switched on if sufficiently negative potentials are applied to the BCP@NEA architecture. When the hydrophobic BCP membrane is introduced on top of 2-electrode-embedded nanopore arrays, electrolyte solution in the nanopores is introduced, then isolated, by exploiting the potential-induced wetting and dewetting transitions in the BCP membrane. The potential-induced wetting/dewetting transition and the effect on cyclic voltammetry in the BCP@NEA structures is characterized as a function of the potential, pH and ionic strength. In addition, chronoamperometry and redox cycling experiments are used to further characterize the potential response. The multi-modal mass transport system proposed in this work will be useful for ultrasensitive sensing and single-molecule studies, which require long-time monitoring to explore reaction dynamics as well as molecular heterogeneity in nanoconfined volumes. 
    more » « less
  4. Understanding the effects of polymer chemistry on membrane ion transport properties is critical for enabling efforts to design advanced highly permselective ion exchange membranes for water purification and energy applications. Here, the effects of fixed charge group type on anion exchange membrane (AEM) apparent permselectivity and ion transport properties were investigated using two crosslinked AEMs. The two AEMs, containing a similar acrylonitrile, styrene and divinyl benzene-based polymer backbone, had either trimethyl ammonium or 1,4-dimethyl imidazolium fixed charge groups. Membrane deswelling, apparent permselectivity and ion transport properties of the two AEMs were characterized using aqueous solutions of lithium chloride, sodium chloride, ammonium chloride, sodium bromide and sodium nitrate. Apparent permselectivity measurements revealed a minor influence of the fixed charge group type on apparent permselectivity. Further analysis of membrane swelling and ion sorption, however, suggests that less hydrophilic fixed charge groups more effectively exclude co-ions compared to more hydrophilic fixed charge groups. Analysis of ion diffusion properties suggest that ion and fixed charge group enthalpy of hydration properties influence ion transport, likely through a counter-ion condensation, ion pairing or binding mechanism. Interactions between fixed charge groups and counter-ions may be stronger if the enthalpy of hydration properties of the ion and fixed charge group are similar, and suppressed counter-ion diffusion was observed in this situation. In general, the hydration properties of the fixed charge group may be important for understanding how fixed charge group chemistry influences ion transport properties in anion exchange membranes. 
    more » « less
  5. Abstract

    Two-dimensional membranes have gained enormous interest due to their potential to deliver precision filtration of species with performance that can challenge current desalination membrane platforms. Molybdenum disulfide (MoS2) laminar membranes have recently demonstrated superior stability in aqueous environment to their extensively-studied analogs graphene-based membranes; however, challenges such as low ion rejection for high salinity water, low water flux, and low stability over time delay their potential adoption as a viable technology. Here, we report composite laminate multilayer MoS2membranes with stacked heterodimensional one- to two-layer-thick porous nanosheets and nanodisks. These membranes have a multimodal porous network structure with tunable surface charge, pore size, and interlayer spacing. In forward osmosis, our membranes reject more than 99% of salts at high salinities and, in reverse osmosis, small-molecule organic dyes and salts are efficiently filtered. Finally, our membranes stably operate for over a month, implying their potential for use in commercial water purification applications.

     
    more » « less