skip to main content

Title: Predictions for complex distributions of stellar elemental abundances in low-mass galaxies

We investigate stellar elemental abundance patterns at $z$ = 0 in eight low-mass ($M_{*}=10^{6}{-}10^{9}\ \text{M}_{\odot }$) galaxies in the Feedback in Realistic Environments cosmological simulations. Using magnesium (Mg) as a representative α-element, we explore stellar abundance patterns in magnesium-to-iron ([Mg/Fe]) versus iron-to-hydrogen ([Fe/H]), which follow an overall monotonic trend that evolved slowly over time. Additionally, we explore three notable secondary features in enrichment (in three different case-study galaxies) that arise from a galaxy merger or bursty star formation. First, we observe a secondary track with a lower [Mg/Fe] than the main trend. At $z$ = 0, stars from this track are predominantly found within 2–6 kpc of the centre; they were accreted in a 1:3 total-mass-ratio merger ∼0.4 Gyr ago. Second, we find a distinct elemental bimodality that forms following a strong burst in star formation in a galaxy at $t_{\text{lookback}}\, \sim 10$ Gyr. This burst quenched star formation for ∼0.66 Gyr, allowing Type Ia supernovae to enrich the system with iron (Fe) before star formation resumed. Third, we examine stripes in enrichment that run roughly orthogonal to the dominant [Mg/Fe] versus [Fe/H] trend; these stripes correspond to short bursts of star formation during which core-collapse supernovae enrich the surrounding medium with Mg (and more » Fe) on short time-scales. If observed, these features would substantiate the utility of elemental abundances in revealing the assembly and star-formation histories of dwarf galaxies. We explore the observability of these features for upcoming spectroscopic studies. Our results show that precise measurements of elemental abundance patterns can reveal critical events in the formation histories of low-mass galaxies.

« less
 ;  ;  ;  ;  ;  
Award ID(s):
2108230 1652522 2107772
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 5671-5685
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high-resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf Galaxy (Sgr), Fornax (Fnx), and the now fully disrupted Gaia Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [ α /Fe]–[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the Magellanic Clouds (MCs) observed by Nidever et al. in the α -element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3–4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier (∼5–7 Gyr ago) than those observed in the MCs. There is no chemical evidence ofmore »a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution.« less
  2. Abstract

    We demonstrate that using up to seven stellar abundance ratios can place observational constraints on the star formation histories (SFHs) of Local Group dSphs, using Sculptor dSph as a test case. We use a one-zone chemical evolution model to fit the overall abundance patterns ofαelements (which probe the core-collapse supernovae that occur shortly after star formation),s-process elements (which probe AGB nucleosynthesis at intermediate delay times), and iron-peak elements (which probe delayed Type Ia supernovae). Our best-fit model indicates that Sculptor dSph has an ancient SFH, consistent with previous estimates from deep photometry. However, we derive a total star formation duration of ∼0.9 Gyr, which is shorter than photometrically derived SFHs. We explore the effect of various model assumptions on our measurement and find that modifications to these assumptions still produce relatively short SFHs of duration ≲1.4 Gyr. Our model is also able to compare sets of predicted nucleosynthetic yields for supernovae and AGB stars, and can provide insight into the nucleosynthesis of individual elements in Sculptor dSph. We find that observed [Mn/Fe] and [Ni/Fe] trends are most consistent with sub-MChType Ia supernova models, and that a combination of “prompt” (delay times similar to core-collapse supernovae) and “delayed” (minimum delaymore »times ≳50 Myr)r-process events may be required to reproduce observed [Ba/Mg] and [Eu/Mg] trends.

    « less
  3. Abstract Type Ia supernovae are critical for feedback and elemental enrichment in galaxies. Recent surveys like the All-Sky Automated Survey for Supernova (ASAS-SN) and the Dark Energy Survey (DES) find that the specific supernova Ia rate at z ∼ 0 may be ≲ 20 − 50 × higher in lower-mass galaxies than at Milky Way-mass. Independently, observations show that the close-binary fraction of solar-type Milky Way stars is higher at lower metallicity. Motivated by these observations, we use the FIRE-2 cosmological zoom-in simulations to explore the impact of metallicity-dependent rate models on galaxies of $M_* \sim 10^7\, \rm {M}_{\odot }-10^{11}\, \rm {M}_{\odot }$. First, we benchmark our simulated star-formation histories (SFHs) against observations, and show that assumed stellar mass functions play a major role in determining the degree of tension between observations and metallicity-independent rate models, potentially causing ASAS-SN and DES observations to agree more than might appear. Models in which the supernova Ia rate increases with decreasing metallicity ($\propto Z^{-0.5 \; \rm {to} \; -1}$) provide significantly better agreement with observations. Encouragingly, these rate increases (≳ 10 × in low-mass galaxies) do not significantly impact galaxy masses and morphologies, which remain largely unaffected except for our most extreme models.more »We explore implications for both [Fe/H] and [$\alpha /\rm {Fe}$] enrichment; metallicity-dependent rate models can improve agreement with the observed stellar mass-metallicity relations in low-mass galaxies. Our results demonstrate that a range of metallicity-dependent rate models are viable for galaxy formation and motivate future work.« less
  4. Abstract The astrophysical origins of r -process elements remain elusive. Neutron star mergers (NSMs) and special classes of core-collapse supernovae (rCCSNe) are leading candidates. Due to these channels’ distinct characteristic timescales (rCCSNe: prompt, NSMs: delayed), measuring r -process enrichment in galaxies of similar mass but differing star formation durations might prove informative. Two recently discovered disrupted dwarfs in the Milky Way’s stellar halo, Kraken and Gaia-Sausage Enceladus (GSE), afford precisely this opportunity: Both have M ⋆ ≈ 10 8 M ⊙ but differing star formation durations of ≈2 Gyr and ≈3.6 Gyr. Here we present R ≈ 50,000 Magellan/MIKE spectroscopy for 31 stars from these systems, detecting the r -process element Eu in all stars. Stars from both systems have similar [Mg/H] ≈ −1, but Kraken has a median [Eu/Mg] ≈ −0.1 while GSE has an elevated [Eu/Mg] ≈ 0.2. With simple models, we argue NSM enrichment must be delayed by 500–1000 Myr to produce this difference. rCCSNe must also contribute, especially at early epochs, otherwise stars formed during the delay period would be Eu free. In this picture, rCCSNe account for ≈50% of the Eu in Kraken, ≈25% in GSE, and ≈15% in dwarfs with extended star formation durationsmore »like Sagittarius. The inferred delay time for NSM enrichment is 10×–100× longer than merger delay times from stellar population synthesis—this is not necessarily surprising because the enrichment delay includes time taken for NSM ejecta to be incorporated into subsequent generations of stars. For example, this may be due to natal kicks that result in r -enriched material deposited far from star-forming gas, which then takes ≈10 8 –10 9 yr to cool in these galaxies.« less

    We report results from deep Suzaku and mostly snapshot Chandra observations of four nearby galaxy groups: MKW4, Antlia, RXJ1159+5531, and ESO3060170. Their peak temperatures vary over 2–3 keV, making them the smallest systems with gas properties constrained to their viral radii. The average Fe abundance in the outskirts (R > 0.25R200) of their intragroup medium is $Z_{\rm Fe}=0.309\pm 0.018\, Z_\odot$ with χ2 = 14 for 12 degrees of freedom, which is remarkably uniform and strikingly similar to that of massive galaxy clusters, and is fully consistent with the numerical predictions from the IllustrisTNG cosmological simulation. Our results support an early-enrichment scenario among galactic systems over an order of magnitude in mass, even before their formation. When integrated out to R200, we start to see a tension between the measured Fe content in intracluster medium and what is expected from supernovae yields. We further constrain their O, Mg, Si, S, and Ni abundances. The abundance ratios of those elements relative to Fe are consistent with the predictions (if available) from IllustrisTNG. Their Type Ia supernovae fraction varies between 14 per cent and 21 per cent. A pure core-collapsed supernovae enrichment at group outskirts can be ruled out. Their cumulative iron-mass-to-light ratios within R200 are half thatmore »of the Perseus cluster, which may imply that galaxy groups do not retain all of their enriched gas due to their shallower gravitational potential wells, or that groups and clusters may have different star formation histories.

    « less