Abstract Permafrost, a key component of Arctic ecosystems, is currently affected by climate warming and anticipated to undergo further significant changes in this century. The most pronounced changes are expected to occur in the transition zone between the discontinuous and continuous types of permafrost. We apply a transient temperature dynamic model to investigate the spatiotemporal evolution of permafrost conditions on the Seward Peninsula, Alaska—a region currently characterized by continuous permafrost in its northern part and discontinuous permafrost in the south. We calibrate model parameters using a variational data assimilation technique exploiting historical ground temperature measurements collected across the study area. The model is then evaluated with a separate control set of the ground temperature data. Calibrated model parameters are distributed across the domain according to ecosystem types. The forcing applied to our model consists of historic monthly temperature and precipitation data and climate projections based on the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Simulated near‐surface permafrost extent for the 2000–2010 decade agrees well with existing permafrost maps and previous Alaska‐wide modeling studies. Future projections suggest a significant increase (3.0°C under RCP 4.5 and 4.4°C under RCP 8.5 at the 2 m depth) in mean decadal ground temperature on average for the peninsula for the 2090–2100 decade when compared to the period of 2000–2010. Widespread degradation of the near‐surface permafrost is projected to reduce its extent at the end of the 21st century to only 43% of the peninsula's area under RCP 4.5 and 8% under RCP 8.5.
more »
« less
Convection-permitting simulations of historical and possible future climate over the contiguous United States
Abstract This study presents a novel, high-resolution, dynamically downscaled dataset that will help inform regional and local stakeholders regarding potential impacts of climate change at the scales necessary to examine extreme mesoscale conditions. WRF-ARW version 4.1.2 was used in a convection-permitting configuration (horizontal grid spacing of 3.75 km; 51 vertical levels; data output interval of 15-min) as a regional climate model for a domain covering the contiguous US Initial and lateral boundary forcing for the regional climate model originates from a global climate model simulation by NCAR (Community Earth System Model) that participated in phase 5 of the Coupled Model Inter comparison Project. Herein, we use a version of these data that are regridded and bias corrected. Two 15-year downscaled simulation epochs were examined comprising of historical (HIST; 1990–2005) and potential future (FUTR; 2085–2100) climate using Representative Concentration Pathway (RCP) 8.5. HIST verification against independent observational data revealed that annual/seasonal/monthly temperature and precipitation (and their extremes) are replicated admirably in the downscaled HIST epoch, with the largest biases in temperature noted with daily maximum temperatures (too cold) and the largest biases in precipitation (too dry) across the southeast US during the boreal warm season. The simulations herein are improved compared to previous work, which is significant considering the differences in previous modeling approaches. Future projections of temperature under the RCP 8.5 scenario are consistent with previous works using various methods. Future precipitation projections suggest statistically significant decreases of precipitation across large segments of the southern Great Plains and Intermountain West, whereas significant increases were noted in the Tennessee/Ohio Valleys and across portions of the Pacific Northwest. Overall, these simulations serve as an additional datapoint/method to detect potential future changes in extreme meso-γ weather phenomena.
more »
« less
- Award ID(s):
- 1637225
- PAR ID:
- 10367045
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Climate Dynamics
- Volume:
- 60
- Issue:
- 1-2
- ISSN:
- 0930-7575
- Page Range / eLocation ID:
- p. 109-126
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate change impacts on precipitation characteristics will alter the hydrologic characteristics, such as peak flows, time to peak, and erosion potential of watersheds. However, many of the currently available climate change datasets are provided at temporal and spatial resolutions that are inadequate to quantify projected changes in hydrologic characteristics of a watershed. Therefore, it is critical to temporally disaggregate coarse-resolution precipitation data to finer resolutions for studies sensitive to precipitation characteristics. In this study, we generated novel 15-minute precipitation datasets from hourly precipitation datasets obtained from five NA-CORDEX downscaled climate models under RCP 8.5 scenario for the historical (1970–1999) and projected (2030–2059) years over the Southeast United States using a modified version of the stochastic method. The results showed conservation of mass of the precipitation inputs. Furthermore, the probability of zero precipitation, variance of precipitation, and maximum precipitation in the disaggregated data matched well with the observed precipitation characteristics. The generated 15-minute precipitation data can be used in all scientific studies that require precipitation data at that resolution.more » « less
-
Abstract Climate change projections provided by global climate models (GCM) are generally too coarse for local and regional applications. Local and regional climate change impact studies therefore use downscaled datasets. While there are studies that evaluate downscaling methodologies, there is no study comparing the downscaled datasets that are actually distributed and used in climate change impact studies, and there is no guidance for selecting a published downscaled dataset. We compare five widely used statistically downscaled climate change projection datasets that cover the conterminous USA (CONUS): ClimateNA, LOCA, MACAv2-LIVNEH, MACAv2-METDATA, and NEX-DCP30. All of the datasets are derived from CMIP5 GCMs and are publicly distributed. The five datasets generally have good agreement across CONUS for Representative Concentration Pathways (RCP) 4.5 and 8.5, although the agreement among the datasets vary greatly depending on the GCM, and there are many localized areas of sharp disagreements. Areas of higher dataset disagreement emerge over time, and their importance relative to differences among GCMs is comparable between RCP4.5 and RCP8.5. Dataset disagreement displays distinct regional patterns, with greater disagreement in △Tmax and △Tmin in the interior West and in the North, and disagreement in △P in California and the Southeast. LOCA and ClimateNA are often the outlier dataset, while the seasonal timing of ClimateNA is somewhat shifted from the others. To easily identify regional study areas with high disagreement, we generated maps of dataset disagreement aggregated to states, ecoregions, watersheds, and forests. Climate change assessment studies can use the maps to evaluate and select one or more downscaled datasets for their study area.more » « less
-
Abstract To paraphrase former Speaker of the House Tip O'Neill, “All climate change is local”—that is, society reacts most immediately to changes in local weather such as regional heat waves and heavy rainstorms. Such phenomena are not well resolved by the current generation of coupled climate models. Here it is shown that dynamical downscaling of climate reanalyses using a high‐resolution regional model can reproduce both the means and extremes of temperature and precipitation as observed in the well‐measured northeastern United States. Given this result, the downscaling is applied to climate projections for the middle and end of the 21st century under Representative Concentration Pathway (RCP) 8.5 as well as for the historical time period to help assess regional climate impacts in the northeastern United States. The resulting high‐resolution projections are intended to support regional sustainability studies for the northeastern United States and are made publicly available.more » « less
-
Observational evidence indicates that the West Antarctic Ice Sheet (WAIS) is losing mass at an accelerating rate. Impacts to global climate resulting from changing ocean circulation patterns due to increased freshwater runoff from Antarctica in the future could have significant implications for global heat transport, but to-date this topic has not been investigated using complex numerical models with realistic freshwater forcing. Here, we present results from a high resolution fully coupled ocean-atmosphere model (CESM 1.2) forced with runoff from Antarctica prescribed from a high resolution regional ice sheet-ice shelf model. Results from the regional simulations indicate a potential freshwater contribution from Antarctica of up to 1 m equivalent sea level rise by the end of the century under RCP 8.5 indicating that a substantial input of freshwater into the Southern Ocean is possible. Our high resolution global simulations were performed under IPCC future climate scenarios RCP 4.5 and 8.5. We will present results showing the impact of WAIS collapse on global ocean circulation, sea ice, air temperature, and salinity in order to assess the potential for abrupt climate change triggered by WAIS collapse.more » « less
An official website of the United States government
