skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Model of the Potassium-Oxygen Battery and its Application in Cathode Design
The potassium-oxygen battery (KOB) is a new type of metal-oxygen battery with high rechargeability and long cycle life. Currently, the energy density is rather limited and must be improved for KOB to become a viable energy storage technology for practical applications. In this study, a two-dimensional, multiphase KOB model is developed to design an optimized cathode structure. The model is validated and is used to study the influence of cathode porosity, surface area, and thickness on the discharge behavior. Higher cathode porosity and surface area are found to increase the discharge capacity and lower the discharge overpotential. However, using a microporous cathode may not be ideal for KOB. The electronic transport properties of the discharge product KO2are assessed, suggesting an effectively higher conductivity of KO2than previously predicted. In consequence, the formation of large KO2deposits with severalμm thickness may effectively inhibit oxygen transport in microporous materials. Thus, a hierarchical cathode porosity together with an optimized current collector design may be the key to significantly higher discharge performance.  more » « less
Award ID(s):
1941083
PAR ID:
10368369
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
169
Issue:
6
ISSN:
0013-4651
Page Range / eLocation ID:
Article No. 060539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Iron- and nitrogen-doped carbon (Fe-N-C) represents a promising class of alternative electrocatalysts to noble metals for the oxygen reduction reaction (ORR) in acidic environments. To make Fe-N-C active, one of the most critical parameters is microporosity, which must be controlled to maximize the active site density. However, the use of microporosity must be optimized for the requirement of high-flux mass transport. Here, we synthesized and demonstrated gyroidal mesoporous Fe-N-C with microporous pore walls as an avenue to combine a high active-site density with favorable mass transport at high flux. The gyroidal mesoporous Fe-N-C catalysts have competitive gravimetric and volumetric ORR activities, comparable to the ORR activity obtained in purely microporous configurations despite having mesoporous features. Our result suggests that the ORR activity of microporous Fe-N-C electrocatalysts can be combined with mesoporosity through the use of mesoporous Fe-N-C with microporous pore walls. We further investigate effects of the nitrogen incorporation method on mesoporous N-doped carbon electrocatalysts. We find that despite having ∼2 × higher N concentration, nitrogen incorporationviaNH3yields similar ORR activity to incorporationviaa chemical additive, a finding we attribute to the role of pyridinic and quaternary N in the ORR. 
    more » « less
  2. Lithium-ion batteries almost exclusively power today’s electric vehicles (EVs). Cutting battery costs is crucial to the promotion of EVs. This paper aims to develop potential solutions to lower the cost and improve battery performance by investigating its design variables: positive electrode porosity and thickness. The open-access lithium-ion battery design and cost model (BatPac) from the Argonne National Laboratory of the United States Department of Energy, has been used for the analyses. Six pouch battery systems with different positive materials are compared in this study (LMO, LFP, NMC 532/LMO, NMC 622, NMC 811, and NCA). Despite their higher positive active material price, nickel-rich batteries (NMC 622, NMC 811, and NCA) present a cheaper total pack cost per kilowatt-hour than other batteries. The higher thickness and lower porosity can reduce the battery cost, enhance the specific energy, lower the battery mass but increase the performance instability. The reliability of the results in this study is proven by comparing estimated and actual commercial EV battery parameters. In addition to the positive electrode thickness and porosity, six other factors that affect the battery's cost and performance have been discussed. They include energy storage, negative electrode porosity, separator thickness and porosity, and negative and positive current collector thickness. 
    more » « less
  3. Abstract Thickening electrodes is one effective approach to increase active material content for higher energy and low‐cost lithium‐ion batteries, but limits in charge transport and huge mechanical stress generation result in poor performance and eventual cell failure. This paper reports a new electrode fabrication process, referred to as µ‐casting, enabling ultrathick electrodes that address the trade‐off between specific capacity and areal/volumetric capacity. The proposed µ‐casting is based on a patterned blade, enabling facile fabrication of 3D electrode structures. The study reveals the governing properties of µ‐casted ultrathick electrodes and how this simultaneously improves battery energy/power performance. The process facilitates a short diffusion path structure that minimizes intercalation‐induced stress, improving energy density and cell stability. This work also investigates the issues with structural integrity, porosity, and paste rheology, and also analyzes mechanical properties due to external force. The µ‐casting enables an ultrathick electrode (≈280 µm) that more effectively utilizes NMC‐811 (LiNi0.8Mn0.1Co0.1O2) cathode and mesocarbon microbeads anode active materials compared to conventional thick electrodes, allowing high‐mass loading (35.7 mg cm−2), 40% higher specific capacity, and 30% higher areal capacity after 200 cycles, high C‐rate performance, and longer cycle life. 
    more » « less
  4. null (Ed.)
    Lithium-ion batteries have received significant research interest due to their advantages in energy and power density, which are important to enabling many devices. One route to further increase energy density is to fabricate thicker electrodes in the battery cell; however, careful consideration must be taken when designing electrodes as to how increasing the thickness impacts the multiscale and multiphase molecular transport processes, which can limit the overall battery operating power. Design of these electrodes necessitates probing the molecular processes when the battery cell undergoes electrochemical charge/discharge. One tool for in situ insights into the cell is neutron imaging, because neutron imaging can provide information of where electrochemical processes occur within the electrodes. In this manuscript, neutron imaging is applied to track the lithiation/delithiation processes within electrodes at different current densities for a full cell with a thick sintered Li 4 Ti 5 O 12 anode and LiCoO 2 cathode. The neutron imaging reveals that the molecular distribution of Li + during discharge within the electrode is sensitive to the current density, or equivalently discharge rate. An electrochemical model provides additional insights into the limiting processes occurring within the electrodes. In particular, the impact of tortuosity and molecular transport in the liquid phase within the interstitial regions in the electrodes are considered, and the influence of tortuosity was shown to be highly sensitive to the current density. Qualitatively, the experimental results suggest that the electrodes behave consistent with the packed hard sphere approximation of Bruggeman tortuosity scaling, which indicates that the electrodes are largely mechanically intact but also that a design that incorporates tunable tortuosity could improve the performance of these types of electrodes. 
    more » « less
  5. In the absence of experimental data of fully developed hierarchical 3D sodium solid-state batteries, we developed an improved continuum model by relying on Machine Learning-assisted parameter fitting to uncover the intrinsic material properties that can be transferred into different battery models. The electrochemical system simulated has sodium metal P2-type Na2/3[Ni1/3Fe1/12Mn7/12]O2(NNFMO) as the cathode material, paired with two types of electrolytes viz, the organic liquid electrolyte and a solid polymer electrolyte. We implemented a 1D continuum model in COMSOL to suit both liquid and solid electrolytes, then used a Gaussian Process Regressor to fit and evaluate the electrochemical parameters in both battery systems. To enhance the generalizability of our model, the liquid cell and solid cell models share the same OCV input for the cathode materials. The resulting parameters are well aligned with their physical meaning and literature values. The continuum model is then used to understand the effect of increasing the thickness of the cathode and current density by analyzing the cathode utilization, and the overpotentials arising from transport and charge transfer. This 1D model and the parameter set are ready to be used in a 3D battery architecture design. 
    more » « less