skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A hybrid adjacency and time-based data structure for analysis of temporal networks
Abstract Dynamic or temporal networks enable representation of time-varying edges between nodes. Conventional adjacency-based data structures used for storing networks such as adjacency lists were designed without incorporating time and can thus quickly retrieve all edges between two sets of nodes (anode-based slice) but cannot quickly retrieve all edges that occur within a given time interval (atime-based slice). We propose a hybrid data structure for storing temporal networks that stores edges in both an adjacency dictionary, enabling rapid node-based slices, and an interval tree, enabling rapid time-based slices. Our hybrid structure also enablescompound slices, where one needs to slice both over nodes and time, either by slicing first over nodes or slicing first over time. We further propose an approach for predictive compound slicing, which attempts to predict whether a node-based or time-based compound slice is more efficient. We evaluate our hybrid data structure on many real temporal network data sets and find that they achieve much faster slice times than existing data structures with only a modest increase in creation time and memory usage.  more » « less
Award ID(s):
2047955 1755824 1830412 2318751
PAR ID:
10368566
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Applied Network Science
Volume:
7
Issue:
1
ISSN:
2364-8228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—Network slicing is a key capability for next gen- eration mobile networks. It enables infrastructure providers to cost effectively customize logical networks over a shared infrastructure. A critical component of network slicing is resource allocation, which needs to ensure that slices receive the resources needed to support their services while optimizing network effi- ciency. In this paper, we propose a novel approach to slice-based resource allocation named Guaranteed seRvice Efficient nETwork slicing (GREET). The underlying concept is to set up a con- strained resource allocation game, where (i) slices unilaterally optimize their allocations to best meet their (dynamic) customer loads, while (ii) constraints are imposed to guarantee that, if they wish so, slices receive a pre-agreed share of the network resources. The resulting game is a variation of the well-known Fisher mar- ket, where slices are provided a budget to contend for network resources (as in a traditional Fisher market), but (unlike a Fisher market) prices are constrained for some resources to ensure that the pre-agreed guarantees are met for each slice. In this way, GREET combines the advantages of a share-based approach (high efficiency by flexible sharing) and reservation-based ones (which provide guarantees by assigning a fixed amount of resources). We characterize the Nash equilibrium, best response dynamics, and propose a practical slice strategy with provable convergence properties. Extensive simulations exhibit substantial improvements over network slicing state-of-the-art benchmarks. 
    more » « less
  2. The high reliability required by many future-generation network services can be enforced by proper resource assignments by means of logical partitions, i.e., network slices, applied in optical metro-aggregation networks. Different strategies can be applied to deploy the virtual network functions (VNFs) composing the slices over physical nodes, while providing different levels of resource isolation (among slices) and protection against failures, based on several available techniques. Considering that, in optical metro-aggregation networks, protection can be ensured at different layers, and the slice protection with traffic grooming calls for evolved multilayer protection approaches. In this paper, we investigate the problem of reliable slicing with protection at the lightpath layer for different levels of slice isolation and different VNF deployment strategies. We model the problem through an integer linear program (ILP), and we devise a heuristic for joint optimization of VNF placement and ligthpath selection. The heuristic maps nodes and links over the physical network in a coordinated manner and provides an effective placement of radio access network functions and the routing and wavelength assignment for the optical layer. The effectiveness of the proposed heuristic is validated by comparison with the optimal solution provided by the ILP. Our illustrative numerical results compare the impact of different levels of isolation, showing that higher levels of network and VNF isolation are characterized by higher costs in terms of optical and computation resources. 
    more » « less
  3. null (Ed.)
    Efficient provisioning of 5G network slices is a major challenge for 5G network slicing technology. Previous slice provisioning methods have only considered network resource attributes and ignored network topology attributes. These methods may result in a decrease in the slice acceptance ratio and the slice provisioning revenue. To address these issues, we propose a two-stage heuristic slice provisioning algorithm, called RT-CSP, for the 5G core network by jointly considering network resource attributes and topology attributes in this paper. The first stage of our method is called the slice node provisioning stage, in which we propose an approach to scoring and ranking nodes using network resource attributes (i.e., CPU capacity and bandwidth) and topology attributes (i.e., degree centrality and closeness centrality). Slice nodes are then provisioned according to the node ranking results. In the second stage, called the slice link provisioning stage, the k-shortest path algorithm is implemented to provision slice links. To further improve the performance of RT-CSP, we propose RT-CSP+, which uses our designed strategy, called minMaxBWUtilHops, to select the best physical path to host the slice link. The strategy minimizes the product of the maximum link bandwidth utilization of the candidate physical path and the number of hops in it to avoid creating bottlenecks in the physical path and reduce the bandwidth cost. Using extensive simulations, we compared our results with those of the state-of-the-art algorithms. The experimental results show that our algorithms increase slice acceptance ratio and improve the provisioning revenue-to-cost ratio. 
    more » « less
  4. Network slicing enables operators to efficiently support diverse applications on a shared infrastructure. However, the evolving complexity of networks, compounded by inter-cell interference, necessitates agile and adaptable resource management. While deep learning offers solutions for coping with complexity, its adaptability to dynamic configurations remains limited. In this paper, we propose a novel hybrid deep learning algorithm called IDLA (integrated deep learning with the Lagrangian method). This integrated approach aims to enhance the scalability, flexibility, and robustness of slicing resource allocation solutions by harnessing the high approximation capability of deep learning and the strong generalization of classical non-linear optimization methods. Then, we introduce a variational information bottleneck (VIB)-assisted domain adaptation (DA) approach to enhance integrated deep learning and Lagrangian method (IDLA)’s adaptability across diverse network environments and conditions. We propose pre-training a variational information bottleneck (VIB)-based Quality of Service (QoS) estimator, using slice-specific inputs shared across all source domain slices. Each target domain slice can deploy this estimator to predict its QoS and optimize slice resource allocation using the IDLA algorithm. This VIB-based estimator is continuously fine-tuned with a mixture of samples from both the source and target domains until convergence. Evaluating on a multi-cell network with time-varying slice configurations, the VIB-enhanced IDLA algorithm outperforms baselines such as heuristic and deep reinforcement learning-based solutions, achieving twice the convergence speed and 16.52% higher asymptotic performance after slicing configuration changes. Transferability assessment demonstrates a 25.66% improvement in estimation accuracy with VIB, especially in scenarios with significant domain gaps, highlighting its robustness and effectiveness across diverse domains. 
    more » « less
  5. Real-world networked systems often show dynamic properties with continuously evolving network nodes and topology over time. When learning from dynamic networks, it is beneficial to correlate all temporal networks to fully capture the similarity/relevance between nodes. Recent work for dynamic network representation learning typically trains each single network independently and imposes relevance regularization on the network learning at different time steps. Such a snapshot scheme fails to leverage topology similarity between temporal networks for progressive training. In addition to the static node relationships within each network, nodes could show similar variation patterns (e.g., change of local structures) within the temporal network sequence. Both static node structures and temporal variation patterns can be combined to better characterize node affinities for unified embedding learning. In this paper, we propose Graph Attention Evolving Networks (GAEN) for dynamic network embedding with preserved similarities between nodes derived from their temporal variation patterns. Instead of training graph attention weights for each network independently, we allow model weights to share and evolve across all temporal networks based on their respective topology discrepancies. Experiments and validations, on four real-world dynamic graphs, demonstrate that GAEN outperforms the state-of-the-art in both link prediction and node classification tasks. 
    more » « less