Surface temperature influences human health directly and alters the biodiversity and productivity of the environment. While previous research has identified that the composition of urban landscapes influences the physical properties of the environment such as surface temperature, a generalizable and flexible framework is needed that can be used to compare cities across time and space. This study employs the Structure of Urban Landscapes (STURLA) classification combined with remote sensing of New York City’s land surface temperature (LST). These are then linked using machine learning and statistical modeling to identify how greenspace and the built environment influence urban surface temperature. Further, changes in urban structure are then connected to changes in LST over time. It was observed that areas with urban units composed of largely the built environment hosted the hottest temperatures while those with vegetation and water were coolest. Likewise, this is reinforced by borough-level spatial differences in both urban structure and heat. Comparison of these relationships over the period between 2008 and 2017 identified changes in surface temperature that are likely due to the changes in the presence of water, low-rise buildings, and pavement across the city. This research reinforces how human alteration of the environment changes LST and offers units of analysis that can be used for research and urban planning. 
                        more » 
                        « less   
                    
                            
                            Heat exposure and resilience planning in Atlanta, Georgia
                        
                    
    
            Abstract The City of Atlanta, Georgia, is a fast-growing urban area with substantial economic and racial inequalities, subject to the impacts of climate change and intensifying heat extremes. Here, we analyze the magnitude, distribution, and predictors of heat exposure across the City of Atlanta, within the boundaries of Fulton County. Additionally, we evaluate the extent to which identified heat exposure is addressed in Atlanta climate resilience governance. First, land surface temperature (LST) was mapped to identify the spatial patterns of heat exposure, and potential socioeconomic and biophysical predictors of heat exposure were assessed. Second, government and city planning documents and policies were analyzed to assess whether the identified heat exposure and risks are addressed in Atlanta climate resilience planning. The average LST of Atlanta’s 305 block groups ranges from 23.7 °C (low heat exposure) in vegetated areas to 31.5 °C (high heat exposure) in developed areas across 13 summer days used to evaluate the spatial patterns of heat exposure (June–August, 2013–2019). In contrast to nationwide patterns, census block groups with larger historically marginalized populations (predominantly Black, less education, lower income) outside of Atlanta’s urban core display weaker relationships with LST (slopes ≈ 0) and are among the cooler regions of the city. Climate governance analysis revealed that although there are few strategies for heat resilience in Atlanta (n= 12), the majority are focused on the city’s warmest region, the urban core, characterized by the city’s largest extent of impervious surface. These strategies prioritize protecting and expanding the city’s urban tree canopy, which has kept most of Atlanta’s marginalized communities under lower levels of outdoor heat exposure. Such a tree canopy can serve as an example of heat resilience for many cities across the United States and the globe. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10368726
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research: Climate
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2752-5295
- Page Range / eLocation ID:
- Article No. 015004
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            High-quality temperature data at a finer spatio-temporal scale is critical for analyzing the risk of heat exposure and hazards in urban environments. The variability of urban landscapes makes cities a challenging environment for quantifying heat exposure. Most of the existing heat hazard studies have inherent limitations on two fronts; first, the spatio-temporal granularities are too coarse, and second, the inability to track the ambient air temperature (AAT) instead of land surface temperature (LST). Overcoming these limitations requires developing models for mapping the variability in heat exposure in urban environments. We investigated an integrated approach for mapping urban heat hazards by harnessing a diverse set of high-resolution measurements, including both ground-based and satellite-based temperature data. We mounted vehicle-borne mobile sensors on city buses to collect high-frequency temperature data throughout 2018 and 2019. Our research also incorporated key biophysical parameters and Landsat 8 LST data into Random Forest regression modeling to map the hyperlocal variability of heat hazard over areas not covered by the buses. The vehicle-borne temperature sensor data showed large temperature differences within the city, with the largest variations of up to 10 °C and morning-afternoon diurnal changes at a magnitude around 20 °C. Random Forest modeling on noontime (11:30 am – 12:30 pm) data to predict AAT produced accurate results with a mean absolute error of 0.29 °C and successfully showcased the enhanced granularity in urban heat hazard mapping. These maps revealed well-defined hyperlocal variabilities in AAT, which were not evident with other research approaches. Urban core and dense residential areas revealed larger than 5 °C AAT differences from their nearby green spaces. The sensing framework developed in this study can be easily implemented in other urban areas, and findings from this study will be beneficial in understanding the heat vulnerabilities of individual communities. It can be used by the local government to devise targeted hazard mitigation efforts such as increasing green space, developing better heatsafety policies, and exposure warning for workers.more » « less
- 
            Abstract We compare high‐resolution land‐surface temperature (LST) estimates from the GOES‐16/17 (GOES) satellites to ERA‐5 Land (ERA‐5) reanalysis data across nine large US cities. We quantify the offset and find that ERA‐5 generally overestimates LST compared to GOES by 1.63°C. However, this overestimation is less pronounced in urban areas, underscoring the limitations of ERA‐5 in capturing the LST gradient between urban and non‐urban areas. We then examine three quantities: Surface Urban Heat Island Intensity (SUHII), extreme LST events, and LST exposure by population. We find that ERA‐5 does not accurately represent the diurnal variation and magnitude of SUHII in GOES. Furthermore, while ERA‐5 was on average too warm, ERA‐5 underestimates extreme heat by an average of 2.40°C. Our analysis reveals higher population exposure to high LST in the GOES data set across the cities studied. This discrepancy is especially pronounced when estimating the population fraction that are most exposed to heat.more » « less
- 
            Many cities are experiencing more frequent extreme heat during hot summers. With the rise of global temperature, the thermal comfort in urban areas become even worse. Quantitative information of the spatial distributions of urban heat has become increasingly important for resilience and adaptation to climate change in cities. This study compares satellite-derived land surface temperature (LST) and urban microclimate modeling-based mean radiant temperature (Tmrt) for mapping the urban heat distributions in Philadelphia, Pennsylvania, USA. The LST was estimated based on Landsat 8 thermal imagery with a spatial resolution of around 100 m, while the Tmrt was simulated based on high resolution LiDAR and national aerial imagery program multispectral aerial imageries with a spatial resolution of 1 m. Result shows that both LST and Tmrt show a similar general pattern of the urban heat across the study area, while the Tmrt presents much more details of the heat variations street by street and neighborhood by neighborhood. The LST tends to have a stronger relationship with the Tmrt on building roofs, which are usually not the place for human activities. This studyprovides evidence for choosing more appropriate metrics in urban heat-related studies.more » « less
- 
            Urban heat mitigation is a pressing concern for cities. Intense urban heat poses a threat to human health and urban sustainability. Tree planting is one of the most widely employed nature-based heat mitigation methods worldwide. Therefore, city policy makers require knowledge of how much temperature will be reduced by increasing urban tree canopy (UTC). Cooling efficiency (CE), which was been proposed to quantify the magnitude of temperature reduction associated with a 1% increase in UTC, has been primarily investigated at smaller scales previously. However, such small-scale results cannot be used to develop policy at the whole-city scale. This study developed a method that reveals the scaling relations of CE so as to predict its effects at the city scale. CE was found to follow the form of a power law as spatial scale increased from the small analytical units through intermediate size units up to the extent of a whole city. The power law form appeared consistently across cities with different climate backgrounds during summer daylight hours. Furthermore, the power law form was robust within cities under different summer weather conditions. The power-law scaling approach can thus be used to predict CE at the whole-city scale, providing a useful tool for managers to set UTC goals to mitigate extreme urban heat.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
