While the performance of mode-locked fiber lasers has been improved significantly, the limited gain bandwidth restricts them from generating ultrashort pulses approaching a few cycles or even shorter. Here we present a novel method to achieve few-cycle pulses (
We present a spatiotemporally mode-locked Mamyshev oscillator. A wide variety of multimode mode-locked states, with varying degrees of spatiotemporal coupling, are observed. We find that some control of the modal content of the output beam is possible through the cavity design. Comparison of simulations with experiments indicates that spatiotemporal mode locking (STML) is enabled by nonlinear intermodal interactions and spatial filtering, along with the Mamyshev mechanism. This work represents a first, to the best of our knowledge, exploration of STML in an oscillator with a Mamyshev saturable absorber.
- Award ID(s):
- 1912742
- Publication Date:
- NSF-PAR ID:
- 10368743
- Journal Name:
- Optics Letters
- Volume:
- 47
- Issue:
- 1
- Page Range or eLocation-ID:
- Article No. 46
- ISSN:
- 0146-9592; OPLEDP
- Publisher:
- Optical Society of America
- Sponsoring Org:
- National Science Foundation
More Like this
-
) with an ultrabroad spectrum ( at ) from a Mamyshev oscillator configuration by inserting a highly nonlinear photonic crystal fiber and a dispersion delay line into the cavity. A dramatic intracavity spectral broadening can be stabilized by the unique nonlinear processes of a self-similar evolution as a nonlinear attractor in the gain fiber and a “perfect” saturable absorber action of the Mamyshev oscillator. To the best of our knowledge, this is the shortest pulse width and broadest spectrum directly generated from a fiber laser. -
Abstract Femtosecond mode-locked laser frequency combs have served as the cornerstone in precision spectroscopy, all-optical atomic clocks, and measurements of ultrafast dynamics. Recently frequency microcombs based on nonlinear microresonators have been examined, exhibiting remarkable precision approaching that of laser frequency combs, on a solid-state chip-scale platform and from a fundamentally different physical origin. Despite recent successes, to date, the real-time dynamical origins and high-power stabilities of such frequency microcombs have not been fully addressed. Here, we unravel the transitional dynamics of frequency microcombs from chaotic background routes to femtosecond mode-locking in real time, enabled by our ultrafast temporal magnifier metrology and improved stability of dispersion-managed dissipative solitons. Through our dispersion-managed oscillator, we further report a stability zone that is more than an order-of-magnitude larger than its prior static homogeneous counterparts, providing a novel platform for understanding ultrafast dissipative dynamics and offering a new path towards high-power frequency microcombs.
-
Spatiotemporal mode-locking in a laser with anomalous dispersion is investigated. Mode-locked states with varying modal content can be observed, but we find it difficult to observe highly-multimode states. We describe the properties of these mode-locked states and compare them to the results of numerical simulations. Prospects for the generation of highly-multimode states and lasers based on multimode soliton formation are discussed.
-
A novel optical frequency division technique, called regenerative harmonic injection locking, is used to transfer the timing stability of an optical frequency comb with a repetition rate in the millimeter wave range (
) to a chip-scale mode-locked laser with a repetition rate. By doing so, the 300 GHz optical frequency comb is optically divided by a factor of to 10 GHz. The stability of the mode-locked laser after regenerative harmonic injection locking is at 1 s with a trend. To facilitate optical frequency division, a coupled opto-electronic oscillator is implemented to assist the injection locking process. This technique is exceptionally power efficient, as it uses less than of optical power to achieve stable locking. -
We report an all-fiber free-running bidirectional dual-comb laser system for coherent anti-Stokes Raman scattering spectroscopy based on spectral focusing. The mode-locked oscillator is a bidirectional ring-cavity erbium fiber laser running at a repetition rate of
. One output of the bidirectional laser is wavelength-shifted from 1560 to 1060 nm via supercontinuum generation for use as the pump source. We have been able to record the Raman spectra of various samples such as polystyrene, olive oil, polymethyl methacrylate (PMMA), and polyethylene in the C–H stretching window. We believe that this all-fiber laser design has promising potential for coherent Raman spectroscopy and also label-free imaging for a variety of practical applications.