skip to main content


Title: Alternate Histories: Synthetic Large Ensembles of Sea‐Air CO 2 Flux
Abstract

We use a statistical emulation technique to construct synthetic ensembles of global and regional sea‐air carbon dioxide (CO2) flux from four observation‐based products over 1985–2014. Much like ensembles of Earth system models that are constructed by perturbing their initial conditions, our synthetic ensemble members exhibit different phasing of internal variability and a common externally forced signal. Our synthetic ensembles illustrate an important role for internal variability in the temporal evolution of global and regional CO2flux and produce a wide range of possible trends over 1990–1999 and 2000–2009. We assume a specific externally forced signal and calculate the rank of the observed trends within the distribution of statistically modeled synthetic trends during these periods. Over the decade 1990–1999, three of four observation‐based products exhibit small negative trends in globally integrated sea‐air CO2flux (i.e., enhanced ocean CO2absorption with time) that are within one standard deviation of the mean in their respective synthetic ensembles. Over the decade 2000–2009, however, three products show large negative trends in globally integrated sea‐air CO2flux that have a low rate of occurrence in their synthetic ensembles. The largest positive trends in global and Southern Ocean flux over 1990–1999 and the largest negative trends over 2000–2009 fall nearly two standard deviations away from the mean in their ensembles. Our approach provides a new perspective on the important role of internal variability in sea‐air CO2flux trends, and furthers understanding of the role of internal and external processes in driving observed sea‐air CO2flux variability.

 
more » « less
Award ID(s):
1543457 1752724
NSF-PAR ID:
10368768
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
36
Issue:
6
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation‐based products. The mean sea‐air CO2flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1based on an ensemble of reconstructions of the history of sea surface pCO2(pCO2products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2‐driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate‐forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate‐driven variability exceeding the CO2‐forced variability by 2–3 times. These results suggest that anthropogenic CO2dominates the ocean CO2sink, while climate‐driven variability is potentially large but highly uncertain and not consistently captured across different methods.

     
    more » « less
  2. null (Ed.)
    Abstract Southeastern South America (SESA; encompassing Paraguay, Southern Brazil, Uruguay, and northern Argentina) experienced a 27% increase in austral summer precipitation from 1902-2019, one of the largest observed trends in seasonal precipitation globally. Previous research identifies Atlantic Multidecadal Variability and anthropogenic forcing from stratospheric ozone depletion and greenhouse gas emissions as key factors contributing to the positive precipitation trends in SESA. We analyze multi-model ensemble simulations from Phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP) and find that not only do Earth System Models simulate positive SESA precipitation trends that are much weaker over the historical interval, but some models persistently simulate negative SESA precipitation trends under historical forcings. Similarly, 16-member ensembles from two atmospheric models forced with observed historical sea surface temperatures never simulate precipitation trends that even reach the lower bound of the observed trend’s range of uncertainty. Moreover, while future 21 st -century projections from CMIP6 yield positive ensemble mean precipitation trends over SESA that grow with increasing greenhouse-gas emissions, the mean forced response never exceeds the observed historical trend. Pre-industrial control runs from CMIP6 indicate that some models do occasionally simulate centennial-scale trends in SESA that fall within the observational range, but most models do not. Results point to significant uncertainties in the attribution of anthropogenically forced influences on the observed increases in precipitation over SESA, while also suggesting that internal decadal-to-centennial variability of unknown origin and not present in state-of-the-art models may have also played a large role in generating the 20 th -21 st -century SESA precipitation trend. 
    more » « less
  3. null (Ed.)
    Abstract The Indian summer monsoon (ISM) rainfall affects a large population in South Asia. Observations show a decline in ISM rainfall from 1950 to 1999 and a recovery from 1999 to 2013. While the decline has been attributed to global warming, aerosol effects, deforestation, and a negative-to-positive phase transition of the interdecadal Pacific oscillation (IPO), the cause for the recovery remains largely unclear. Through analyses of a 57-member perturbed-parameter ensemble of model simulations, this study shows that the externally forced rainfall trend is relatively weak and is overwhelmed by large internal variability during both 1950–99 and 1999–2013. The IPO is identified as the internal mode that helps modulate the recent decline and recovery of the ISM rainfall. The IPO induces ISM rainfall changes through moisture convergence anomalies associated with an anomalous Walker circulation and meridional tropospheric temperature gradients and the resultant anomalous convection and zonal moisture advection. The negative-to-positive IPO phase transition from 1950 to 1999 reduces what would have been an externally forced weak upward rainfall trend of 0.01 to −0.15 mm day −1 decade −1 during that period, while the rainfall trend from 1999 to 2013 increases from the forced value of 0.42 to 0.68 mm day −1 decade −1 associated with a positive-to-negative IPO phase transition. Such a significant modulation of the historical ISM rainfall trends by the IPO is confirmed by another 100-member ensemble of simulations using perturbed initial conditions. Our findings highlight that the interplay between the effects of external forcing and the IPO needs be considered for climate adaptation and mitigation strategies in South Asia. 
    more » « less
  4. Abstract. The Arctic marine environment plays an important role inthe global carbon cycle. However, there remain large uncertainties in howsea ice affects air–sea fluxes of carbon dioxide (CO2), partially dueto disagreement between the two main methods (enclosure and eddy covariance)for measuring CO2 flux (FCO2). The enclosure method has appearedto produce more credible FCO2 than eddy covariance (EC), but is notsuited for collecting long-term, ecosystem-scale flux datasets in suchremote regions. Here we describe the design and performance of an EC systemto measure FCO2 over landfast sea ice that addresses the shortcomingsof previous EC systems. The system was installed on a 10m tower onQikirtaarjuk Island – a small rock outcrop in Dease Strait located roughly35km west of Cambridge Bay, Nunavut, in the Canadian Arctic Archipelago. Thesystem incorporates recent developments in the field of air–sea gasexchange by measuring atmospheric CO2 using a closed-path infrared gasanalyzer (IRGA) with a dried sample airstream, thus avoiding the known watervapor issues associated with using open-path IRGAs in low-flux environments.A description of the methods and the results from 4 months of continuousflux measurements from May through August 2017 are presented, highlightingthe winter to summer transition from ice cover to open water. We show thatthe dried, closed-path EC system greatly reduces the magnitude of measuredFCO2 compared to simultaneous open-path EC measurements, and for thefirst time reconciles EC and enclosure flux measurements over sea ice. Thisnovel EC installation is capable of operating year-round on solar and windpower, and therefore promises to deliver new insights into the magnitude ofCO2 fluxes and their driving processes through the annual sea icecycle.

     
    more » « less
  5. Abstract

    Internal climate variability plays an important role in the abundance and distribution of phytoplankton in the global ocean. Previous studies using large ensembles of Earth system models (ESMs) have demonstrated their utility in the study of marine phytoplankton variability. These ESM large ensembles simulate the evolution of multiple alternate realities, each with a different phasing of internal climate variability. However, ESMs may not accurately represent real world variability as recorded via satellite and in situ observations of ocean chlorophyll over the past few decades. Observational records of surface ocean chlorophyll equate to a single ensemble member in the large ensemble framework, and this can cloud the interpretation of long‐term trends: are they externally forced, caused by the phasing of internal variability, or both? Here, we use a novel statistical emulation technique to place the observational record of surface ocean chlorophyll into the large ensemble framework. Much like a large initial condition ensemble generated with an ESM, the resulting synthetic ensemble represents multiple possible evolutions of ocean chlorophyll concentration, each with a different sampling of internal climate variability. We further demonstrate the validity of our statistical approach by recreating an ESM ensemble of chlorophyll using only a single ESM ensemble member. We use the synthetic ensemble to explore the interpretation of long‐term trends in the presence of internal variability and find a wider range of possible trends in chlorophyll due to the sampling of internal variability in subpolar regions than in subtropical regions.

     
    more » « less