skip to main content


Title: Development of the Cooperative Adoption Factors Instrument to measure factors associated with instructional practice in the context of institutional change
Abstract Background

Many institutional and departmentally focused change efforts have sought to improve teaching in STEM through the promotion of evidence-based instructional practices (EBIPs). Even with these efforts, EBIPs have not become the predominant mode of teaching in many STEM departments. To better understand institutional change efforts and the barriers to EBIP implementation, we developed the Cooperative Adoption Factors Instrument (CAFI) to probe faculty member characteristics beyond demographic attributes at the individual level. The CAFI probes multiple constructs related to institutional change including perceptions of the degree of mutual advantage of taking an action (strategic complements), trust and interconnectedness among colleagues (interdependence), and institutional attitudes toward teaching (climate).

Results

From data collected across five STEM fields at three large public research universities, we show that the CAFI has evidence of internal structure validity based on exploratory and confirmatory factor analysis. The scales have low correlations with each other and show significant variation among our sampled universities as demonstrated by ANOVA. We further demonstrate a relationship between the strategic complements and climate factors with EBIP adoption through use of a regression analysis. In addition to these factors, we also find that indegree, a measure of opinion leadership, correlates with EBIP adoption.

Conclusions

The CAFI uses the CACAO model of change to link the intended outcome of EBIP adoption with perception of EBIPs as mutually reinforcing (strategic complements), perception of faculty having their fates intertwined (interdependence), and perception of institutional readiness for change (climate). Our work has established that the CAFI is sensitive enough to pick up on differences between three relatively similar institutions and captures significant relationships with EBIP adoption. Our results suggest that the CAFI is likely to be a suitable tool to probe institutional change efforts, both for change agents who wish to characterize the local conditions on their respective campuses to support effective planning for a change initiative and for researchers who seek to follow the progression of a change initiative. While these initial findings are very promising, we also recommend that CAFI be administered in different types of institutions to examine the degree to which the observed relationships hold true across contexts.

 
more » « less
Award ID(s):
1726503 1726409 1726330
NSF-PAR ID:
10368839
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
9
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Instructional reform in STEM aims for the widespread adoption of evidence based instructional practices (EBIPS), practices that implement active learning. Research recognizes that faculty social networks regarding discussion or advice about teaching may matter to such efforts. But teaching is not the only priority for university faculty – meeting research expectations is at least as important and, often, more consequential for tenure and promotion decisions. We see value in understanding how research networks, based on discussion and advice about research matters, relate to teaching networks to see if and how such networks could advance instructional reform efforts. Our research examines data from three departments (biology, chemistry, and geosciences) at three universities that had recently received funding to enhance adoption of EBIPs in STEM fields. We evaluate exponential random graph models of the teaching network and find that (a) the existence of a research tie from one faculty member$$i$$ito another$$j$$jenhances the prospects of a teaching tie from$$i$$ito$$j$$j, but (b) even though faculty highly placed in the teaching network are more likely to be extensive EBIP users, faculty highly placed in the research network are not, dimming prospects for leveraging research networks to advance STEM instructional reforms.

     
    more » « less
  2. Abstract Background

    There has been a growing interest in characterizing factors influencing teaching decisions of science, technology, engineering, and mathematics (STEM) instructors in order to address the slow uptake of evidence-based instructional practices (EBIPs). This growing body of research has identified contextual factors (e.g., classroom layout, departmental norms) as primary influencers of STEM instructors’ decision to implement EBIPs in their courses. However, models of influences on instructional practices indicate that context is only one type of factor to consider. Other factors fall at the individual level such as instructors’ past teaching experience and their views on learning. Few studies have been able to explore in depth the role of these individual factors on the adoption of EBIPs since it is challenging to control for contextual features when studying current instructors. Moreover, most studies exploring adoption of EBIPs do not take into account the distinctive features of each EBIP and the influence these features may have on the decision to adopt the EBIP. Rather, studies typically explore barriers and drivers to the implementation of EBIPs in general. In this study, we address these gaps in the literature by conducting an in-depth exploration of individual factors and EBIPs’ features that influence nine future STEM instructors’ decisions to incorporate a selected set of EBIPs in their teaching.

    Results

    We had hypothesized that the future instructors would have different reasoning to support their decisions to adopt or not Peer Instruction and the 5E Model as the two EBIPs have distinctive features. However, our results demonstrate that instructors based their decisions on similar factors. In particular, we found that the main drivers of their decisions were (1) the compatibility of the EBIP with their past experiences as students and instructors as well as teaching values and (2) experiences provided in the pedagogical course they were enrolled in.

    Conclusions

    This study demonstrates that when considering the adoption of EBIPs, there is a need to look beyond solely contextual influences on instructor’s decisions to innovate in their courses and explore individual factors. Moreover, professional development programs should leverage their participants past experiences as students and instructors and provide an opportunity for instructors to experience new EBIPs as learners and instructors.

     
    more » « less
  3. Abstract Background

    Efforts to achieve improved student outcomes in STEM are critically reliant on the success of reform efforts associated with teaching and learning. Reform efforts include the transformation of course-based practices, community values, and the institutional policies and structures associated with teaching and learning in higher education. Enacting change is a complex process that can be guided by change theories that describe how and why a desired change takes place. We analyzed the utility of a theory-based change model applied in a higher education setting. Our results provide guidance for change efforts at other institutions.

    Results

    Use of the CACAO model to guide the transformation of STEM instruction at a large public university resulted in changes to faculty teaching practices and department culture consistent with the vision defined for the project. Such changes varied across STEM departments in accordance with the emergent nature of project activities at the department level. Our application of the CACAO model demonstrates the importance of (1) creating a vision statement (statement of desired change or end-state); (2) attending to different levels of the organization (e.g., individuals, departments, and colleges); (3) working with change agents who are situated to be effective at different organizational levels; and (4) employing strategies to meet the needs and interests of faculty at different stages of adoption with respect to the desired change.

    Conclusion

    Our work, which demonstrates the utility of the CACAO model for change and captures its key elements in a matrix, provides a potential foundation for others considering how to frame and study change efforts. It reinforces the value of using change theories to inform change efforts and creates a structure that others can build on and modify, either by applying our CACAO matrix in their own setting or by using the matrix to identify elements that connect to other change theories. We contribute to the growing body of literature which seeks to understand how change theories can be useful and generalizable beyond a single project.

     
    more » « less
  4. Abstract Background

    Enacting STEM education reform is a complex task and there are a variety of approaches that might be selected by change agents. When working on an institutional change project to impact multiple parts of the STEM education system, teams of change agents may select multiple strategies and tactics to enact at one time and over multiple years of a project. However, the literature lacks studies which document and analyze strategies and tactics used by change project teams in a way that can be useful for other change agents. The current study seeks to fill this gap by investigating National Science Foundation-funded change initiatives at three public research universities focused on encouraging the adoption of evidenced-based instructional practices by STEM faculty in order to understand the strategies used within and across projects.

    Results

    Qualitative framework analysis using the lens of the Henderson et al. (Journal of Research in Science Teaching 48(8): 952–984, 2011.https://doi.org/10.1002/tea.20439) Four Categories of Change Strategies Model showed that institutional projects enact a wide range of tactics that span the four strategies represented in the four categories of the model both across institutions and within each institution. The analysis documents a number of change tactics not previously described by the model and offers expanded definitions of the change processes that operate within each category in the context of institutional change projects.

    Conclusion

    This descriptive work advances our understanding of the breadth and depth of actions taken by institutional change initiatives and provides insights into types of variations that might be observed based on different institutional contexts. The current analysis both affirms the value of the original model and identifies expanded ways to think about the four categories within the context of institutional change projects.

     
    more » « less
  5. Abstract Background

    Active learning used in science, technology, engineering, and mathematics (STEM) courses has been shown to improve student outcomes. Nevertheless, traditional lecture-orientated approaches endure in these courses. The implementation of teaching practices is a result of many interrelated factors including disciplinary norms, classroom context, and beliefs about learning. Although factors influencing uptake of active learning are known, no study to date has had the statistical power to empirically test the relative association of these factors with active learning when considered collectively. Prior studies have been limited to a single or small number of evaluated factors; in addition, such studies did not capture the nested nature of institutional contexts. We present the results of a multi-institution, large-scale (N = 2382 instructors;N = 1405 departments;N = 749 institutions) survey-based study in the United States to evaluate 17 malleable factors (i.e., influenceable and changeable) that are associated with the amount of time an instructor spends lecturing, a proxy for implementation of active learning strategies, in introductory postsecondary chemistry, mathematics, and physics courses.

    Results

    Regression analyses, using multilevel modeling to account for the nested nature of the data, indicate several evaluated contextual factors, personal factors, and teacher thinking factors were significantly associated with percent of class time lecturing when controlling for other factors used in this study. Quantitative results corroborate prior research in indicating that large class sizes are associated with increased percent time lecturing. Other contextual factors (e.g., classroom setup for small group work) and personal contexts (e.g., participation in scholarship of teaching and learning activities) are associated with a decrease in percent time lecturing.

    Conclusions

    Given the malleable nature of the factors, we offer tangible implications for instructors and administrators to influence the adoption of more active learning strategies in introductory STEM courses.

     
    more » « less