skip to main content

Title: On the synthesis of heavy nuclei in protomagnetar outflows and implications for ultra-high energy cosmic rays
ABSTRACT

It has been suggested that strongly magnetized and rapidly rotating protoneutron stars (PNSs) may produce long duration gamma-ray bursts (GRBs) originating from stellar core collapse. We explore the steady-state properties and heavy element nucleosynthesis in neutrino-driven winds from such PNSs whose magnetic axis is generally misaligned with the axis of rotation. We consider a wide variety of central engine properties such as surface dipole field strength, initial rotation period, and magnetic obliquity to show that heavy element nuclei can be synthesized in the radially expanding wind. This process is facilitated provided the outflow is Poynting-flux dominated such that its low entropy and fast expansion time-scale enables heavy nuclei to form in a more efficient manner as compared to the equivalent thermal GRB outflows. We also examine the acceleration and survival of these heavy nuclei and show that they can reach sufficiently high energies ≳ 1020 eV within the same physical regions that are also responsible for powering gamma-ray emission, primarily through magnetic dissipation processes. Although these magnetized outflows generally fail to achieve the production of elements heavier than lanthanides for our explored electron fraction range 0.4–0.6, we show that they are more than capable of synthesizing nuclei near and beyond more » iron peak elements.

« less
Authors:
; ;
Award ID(s):
1914409 1908960 2108467 2108466 1908689
Publication Date:
NSF-PAR ID:
10368897
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
4
Page Range or eLocation-ID:
p. 6011-6024
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We study the nucleosynthesis products in neutrino-driven winds from rapidly rotating, highly magnetized and misaligned protomagnetars using the nuclear reaction network SkyNet. We adopt a semi-analytic parametrized model for the protomagnetar and systematically study the capabilities of its neutrino-driven wind for synthesizing nuclei and eventually producing ultra-high energy cosmic rays (UHECRs). We find that for neutron-rich outflows (Ye < 0.5), synthesis of heavy elements ($\overline{A}\sim 20-65$) is possible during the first $\sim 10\, {\rm s}$ of the outflow, but these nuclei are subjected to composition-altering photodisintegration during the epoch of particle acceleration at the dissipation radii. However, after the first $\sim 10\, {\rm s}$ of the outflow, nucleosynthesis reaches lighter elements ($\overline{A}\sim 10-50$) that are not subjected to subsequent photodisintegration. For proton-rich (Ye ≥ 0.5) outflows, synthesis is more limited ($\overline{A}\sim 4-15$). These suggest that while protomagnetars typically do not synthesize nuclei heavier than second r-process peak elements, they are intriguing sources of intermediate/heavy mass UHECRs. For all configurations, the most rapidly rotating protomagnetars are more conducive for nucleosynthesis with a weaker dependence on the magnetic field strength.
  2. ABSTRACT

    We present a suite of the first 3D GRMHD collapsar simulations, which extend from the self-consistent jet launching by an accreting Kerr black hole (BH) to the breakout from the star. We identify three types of outflows, depending on the angular momentum, l, of the collapsing material and the magnetic field, B, on the BH horizon: (i) subrelativistic outflow (low l and high B), (ii) stationary accretion shock instability (SASI; high l and low B), (iii) relativistic jets (high l and high B). In the absence of jets, free-fall of the stellar envelope provides a good estimate for the BH accretion rate. Jets can substantially suppress the accretion rate, and their duration can be limited by the magnetization profile in the star. We find that progenitors with large (steep) inner density power-law indices (≳ 2), face extreme challenges as gamma-ray burst (GRB) progenitors due to excessive luminosity, global time evolution in the light curve throughout the burst and short breakout times, inconsistent with observations. Our results suggest that the wide variety of observed explosion appearances (supernova/supernova + GRB/low-luminosity GRBs) and the characteristics of the emitting relativistic outflows (luminosity and duration) can be naturally explained by the differences in the progenitor structure.more »Our simulations reveal several important jet features: (i) strong magnetic dissipation inside the star, resulting in weakly magnetized jets by breakout that may have significant photospheric emission and (ii) spontaneous emergence of tilted accretion disc-jet flows, even in the absence of any tilt in the progenitor.

    « less
  3. ABSTRACT

    The hot component of the circumgalactic medium (CGM) around star-forming galaxies is detected as diffuse X-ray emission. The X-ray spectra from the CGM depend on the temperature and metallicity of the emitting plasma, providing important information about the feeding and feedback of the galaxy. The observed spectra are commonly fitted using simple one-temperature (1-T) or two-temperature (2-T) models. However, the actual temperature distribution of the gas can be complex because of the interaction between galactic outflows and halo gas. Here, we demonstrate this by analysing 3D hydrodynamical simulations of the CGM with a realistic outflow model. We investigate the physical properties of the simulated hot CGM, which shows a broad distribution in density, temperature, and metallicity. By constructing and fitting the simulated spectra, we show that, while the 1-T and 2-T models are able to fit the synthesized spectra reasonably well, the inferred temperature(s) does not bear much physical meaning. Instead, we propose a lognormal distribution as a more physical model. The lognormal model better fits the simulated spectra while reproducing the gas temperature distribution. We also show that when the star formation rate is high, the spectra inside the biconical outflows are distinct from those outside, as outflowsmore »are generally hotter and more metal enriched. Finally, we produce mock spectra for future missions with the eV-level spectral resolution, such as Athena, Lynx, the Hot Universe Baryon Surveyor, and theX-ray Imaging and Spectroscopy Mission.

    « less
  4. ABSTRACT

    We investigate the kinematics of the molecular gas in a sample of seven edge-on (i > 60°) galaxies identified as hosting large-scale outflows of ionized gas, using ALMA CO(1–0) observations at ∼1 kpc resolution. We build on Hogarth et al., where we find that molecular gas is more centrally concentrated in galaxies which host winds than in control objects. We perform full three-dimensional kinematic modelling with multiple combinations of kinematic components, allowing us to infer whether these objects share any similarities in their molecular gas structure. We use modelling to pinpoint the kinematic centre of each galaxy, in order to interpret their minor- and major-axis position velocity diagrams (PVDs). From the PVDs, we find that the bulk of the molecular gas in our galaxies is dynamically cold, tracing the rotation curves predicted by our symmetric, rotation-dominated models, but with minor flux asymmetries. Most notably, we find evidence of radial gas motion in a subset of our objects, which demonstrate a characteristic ‘twisting’ in their minor-axis PVDs generally associated with gas flow along the plane of a galaxy. In our highest S/N object, we include bi-symmetric radial flow in our kinematic model, and find (via the Bayesian Information Criterion) that the presencemore »of radial gas motion is strongly favoured. This may provide one mechanism by which molecular gas and star formation are centrally concentrated, enabling the launch of massive ionized gas winds. However, in the remainder of our sample, we do not observe evidence that gas is being driven radially, once again emphasizing the variety of physical processes that may be powering the outflows in these objects, as originally noted in H21.

    « less
  5. Abstract

    It is commonly believed that blazar jets are relativistic magnetized plasma outflows from supermassive black holes. One key question is how the jets dissipate magnetic energy to accelerate particles and drive powerful multiwavelength flares. Relativistic magnetic reconnection has been proposed as the primary plasma physical process in the blazar emission region. Recent numerical simulations have shown strong acceleration of nonthermal particles that may lead to multiwavelength flares. Nevertheless, previous works have not directly evaluatedγ-ray signatures from first-principles simulations. In this paper, we employ combined particle-in-cell and polarized radiation transfer simulations to study multiwavelength radiation and optical polarization signatures under the leptonic scenario from relativistic magnetic reconnection. We find harder-when-brighter trends in optical and Fermi-LATγ-ray bands as well as closely correlated optical andγ-ray flares. The swings in optical polarization angle are also accompanied byγ-ray flares with trivial time delays. Intriguingly, we find highly variable synchrotron self-Compton signatures due to inhomogeneous particle distributions during plasmoid mergers. This feature may result in fastγ-ray flares or orphanγ-ray flares under the leptonic scenario, complementary to the frequently considered minijet scenario. It may also imply neutrino emission with low secondary synchrotron flux under the hadronic scenario, if plasmoid mergers can accelerate protons to very highmore »energy.

    « less