skip to main content

Title: On the synthesis of heavy nuclei in protomagnetar outflows and implications for ultra-high energy cosmic rays

It has been suggested that strongly magnetized and rapidly rotating protoneutron stars (PNSs) may produce long duration gamma-ray bursts (GRBs) originating from stellar core collapse. We explore the steady-state properties and heavy element nucleosynthesis in neutrino-driven winds from such PNSs whose magnetic axis is generally misaligned with the axis of rotation. We consider a wide variety of central engine properties such as surface dipole field strength, initial rotation period, and magnetic obliquity to show that heavy element nuclei can be synthesized in the radially expanding wind. This process is facilitated provided the outflow is Poynting-flux dominated such that its low entropy and fast expansion time-scale enables heavy nuclei to form in a more efficient manner as compared to the equivalent thermal GRB outflows. We also examine the acceleration and survival of these heavy nuclei and show that they can reach sufficiently high energies ≳ 1020 eV within the same physical regions that are also responsible for powering gamma-ray emission, primarily through magnetic dissipation processes. Although these magnetized outflows generally fail to achieve the production of elements heavier than lanthanides for our explored electron fraction range 0.4–0.6, we show that they are more than capable of synthesizing nuclei near and beyond more » iron peak elements.

« less
; ;
Award ID(s):
1914409 1908960 2108467 2108466 1908689
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 6011-6024
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    We study the nucleosynthesis products in neutrino-driven winds from rapidly rotating, highly magnetized and misaligned protomagnetars using the nuclear reaction network SkyNet. We adopt a semi-analytic parametrized model for the protomagnetar and systematically study the capabilities of its neutrino-driven wind for synthesizing nuclei and eventually producing ultra-high energy cosmic rays (UHECRs). We find that for neutron-rich outflows (Ye < 0.5), synthesis of heavy elements ($\overline{A}\sim 20-65$) is possible during the first $\sim 10\, {\rm s}$ of the outflow, but these nuclei are subjected to composition-altering photodisintegration during the epoch of particle acceleration at the dissipation radii. However, after the first $\sim 10\, {\rm s}$ of the outflow, nucleosynthesis reaches lighter elements ($\overline{A}\sim 10-50$) that are not subjected to subsequent photodisintegration. For proton-rich (Ye ≥ 0.5) outflows, synthesis is more limited ($\overline{A}\sim 4-15$). These suggest that while protomagnetars typically do not synthesize nuclei heavier than second r-process peak elements, they are intriguing sources of intermediate/heavy mass UHECRs. For all configurations, the most rapidly rotating protomagnetars are more conducive for nucleosynthesis with a weaker dependence on the magnetic field strength.


    Relativistic jets originating from protomagnetar central engines can lead to long duration gamma-ray bursts (GRBs) and are considered potential sources of ultra-high-energy cosmic rays and secondary neutrinos. We explore the propagation of such jets through a broad range of progenitors, from stars which have shed their envelopes to supergiants which have not. We use a semi-analytical spin-down model for the strongly magnetized and rapidly rotating protoneutron star (PNS) to investigate the role of central engine properties such as the surface dipole field strength, initial rotation period, and jet opening angle on the interactions and dynamical evolution of the jet-cocoon system. With this model, we determine the properties of the relativistic jet, the mildly relativistic cocoon, and the collimation shock in terms of system parameters such as the time-dependent jet luminosity, injection angle, and density profile of the stellar medium. We also analyse the criteria for a successful jet breakout, the maximum energy that can be deposited into the cocoon by the relativistic jet, and structural stability of the magnetized outflow relative to local instabilities. Lastly, we compute the high-energy neutrino emission as these magnetized outflows burrow through their progenitors. Precursor neutrinos from successful GRB jets are unlikely to bemore »detected by IceCube, which is consistent with the results of previous works. On the other hand, we find that high-energy neutrinos may be produced for extended progenitors like blue and red supergiants, and we estimate the detectability of neutrinos with next generation detectors such as IceCube-Gen2.

    « less
  3. Abstract

    Gamma-ray bursts (GRBs) have historically been divided into two classes. Short-duration GRBs are associated with binary neutron star mergers (NSMs), while long-duration bursts are connected to a subset of core-collapse supernovae (SNe). GRB 211211A recently made headlines as the first long-duration burst purportedly generated by an NSM. The evidence for an NSM origin was excess optical and near-infrared emission consistent with the kilonova observed after the gravitational-wave-detected NSM GW170817. Kilonovae derive their unique electromagnetic signatures from the properties of the heavy elements synthesized by rapid neutron capture (ther-process) following the merger. Recent simulations suggest that the “collapsar” SNe that trigger long GRBs may also producer-process elements. While observations of GRB 211211A and its afterglow rule out an SN typical of those that follow long GRBs, an unusual collapsar could explain both the duration of GRB 211211A and ther-process-powered excess in its afterglow. We use semianalytic radiation transport modeling to evaluate low-mass collapsars as the progenitors of GRB 211211A–like events. We compare a suite of collapsar models to the afterglow-subtracted emission that followed GRB 211211A, and find the best agreement for models with high kinetic energies and an unexpected pattern of56Ni enrichment. We discuss how core-collapse explosions could produce suchmore »ejecta, and how distinct our predictions are from those generated by more straightforward kilonova models. We also show that radio observations can distinguish between kilonovae and the more massive collapsar ejecta we consider here.

    « less

    We present a suite of the first 3D GRMHD collapsar simulations, which extend from the self-consistent jet launching by an accreting Kerr black hole (BH) to the breakout from the star. We identify three types of outflows, depending on the angular momentum, l, of the collapsing material and the magnetic field, B, on the BH horizon: (i) subrelativistic outflow (low l and high B), (ii) stationary accretion shock instability (SASI; high l and low B), (iii) relativistic jets (high l and high B). In the absence of jets, free-fall of the stellar envelope provides a good estimate for the BH accretion rate. Jets can substantially suppress the accretion rate, and their duration can be limited by the magnetization profile in the star. We find that progenitors with large (steep) inner density power-law indices (≳ 2), face extreme challenges as gamma-ray burst (GRB) progenitors due to excessive luminosity, global time evolution in the light curve throughout the burst and short breakout times, inconsistent with observations. Our results suggest that the wide variety of observed explosion appearances (supernova/supernova + GRB/low-luminosity GRBs) and the characteristics of the emitting relativistic outflows (luminosity and duration) can be naturally explained by the differences in the progenitor structure.more »Our simulations reveal several important jet features: (i) strong magnetic dissipation inside the star, resulting in weakly magnetized jets by breakout that may have significant photospheric emission and (ii) spontaneous emergence of tilted accretion disc-jet flows, even in the absence of any tilt in the progenitor.

    « less

    Strong dynamical interactions among stars and compact objects are expected in a variety of astrophysical settings, such as star clusters and the disks of active galactic nuclei. Via a suite of three-dimensional hydrodynamics simulations using the moving-mesh code arepo, we investigate the formation of transient phenomena and their properties in close encounters between an $2\, {\rm M}_{\odot }$ or $20\, {\rm M}_{\odot }$ equal-mass circular binary star and single $20\, {\rm M}_{\odot }$ black hole (BH). Stars can be disrupted by the BH during dynamical interactions, naturally producing electromagnetic transient phenomena. Encounters with impact parameters smaller than the semimajor axis of the initial binary frequently lead to a variety of transients whose electromagnetic signatures are qualitatively different from those of ordinary disruption events involving just two bodies. These include the simultaneous or successive disruptions of both stars and one full disruption of one star accompanied by successive partial disruptions of the other star. On the contrary, when the impact parameter is larger than the semimajor axis of the initial binary, the binary is either simply tidally perturbed or dissociated into bound and unbound single stars (‘micro-Hills’ mechanism). The dissociation of $20\, {\rm M}_{\odot }$ binaries can produce a runawaymore »star and an active BH moving away from one another. Also, the binary dissociation can either produce an interacting binary with the BH, or a non-interacting, hard binary; both could be candidates of BH high- and low-mass X-ray binaries. Hence, our simulations especially confirm that strong encounters can lead to the formation of the (generally difficult to form) BH low-mass X-ray binaries.

    « less