skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optical microstructure fabrication using structured polarized illumination
A versatile system for the fabrication of surface microstructures is demonstrated by combining the photomechanical response of supramolecular azopolymers with structured polarized illumination from a high resolution spatial light modulator. Surface relief structures with periods 900 nm - 16.5 µm and amplitudes up to 1.0 µm can be fabricated with a single 5 sec exposure at 488 nm. Sinusoidal, circular, and chirped surface profiles can be fabricated via direct programming of the spatial light modulator, with no optomechanical realignment required. Surface microstructures can be combined into macroscopic areas by mechanical translation followed by exposure. The surface structures grow immediately in response to illumination, can be visually observed in real time, and require no post-exposure processing.  more » « less
Award ID(s):
2024118 1919557
PAR ID:
10369123
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
5
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 7308
Size(s):
Article No. 7308
Sponsoring Org:
National Science Foundation
More Like this
  1. A maskless single beam process for photofabrication of surface microstructures is reported. A continuously moving azopolymer film is illuminated with structured polarized light from a 488 nm laser and spatial light modulator, driving the formation of surface relief gratings in real time. The structures were replicated using nanoimprint lithography, and exhibited a maximum diffraction efficiency of order 30% at 633 nm. Using the period tunability of the spatial light modulator, surface gratings were fabricated that diffract red, green, and blue light along a common direction, illustrating the potential of this fabrication platform in the field of structured color. 
    more » « less
  2. Abstract Thin film supramolecular azopolymers support the all‐optical generation of dynamic surface microstructures. Using a spatial light modulator (SLM) illuminated at 488 nm, structured polarized light drives surface waves of sinusoidal profile with periods 700 nm–5 µm at speeds up to 1 µm s−1. Multiple regions on the film surface within the SLM focal plane can be independently set into motion, each with unique period, speed, amplitude, and propagation direction. The underlying mechanism is the photomechanical response of the azopolymer, which is more commonly exploited for the fabrication of static surface microstructures. Hydrogen‐bonded systems such as the supramolecular system described here are particularly advantageous due to their facile fabrication from commercially available components. In addition to applications in dynamic diffractive optics, this programmable system for optical surface waves is well‐suited for studies in nanoparticle manipulation, as well as in bioengineering as a reconfigurable surface template for directed cell growth. 
    more » « less
  3. This paper presents a computer-controlled tilt-rotational UV-laser exposure system for 3D microfabrication. The system incorporates a beam expander to enlarge the beam width of a 405 nm laser diode, which serves as the light source. A computer-controlled sample holder platform utilizes two stepper motors to enable tilting and rotational movements, allowing the creation of complex microstructures using SU-8 photoresist via the lithography process. By implementing various combinations of tilting and rotation, arrays of intricate 3D microstructures, including pillars, angled pillars, horns, and bowties, were successfully fabricated, with feature heights ranging from 20 to 500 μm. The tiltable UV-laser exposure system holds significant potential for applications in 3D microelectromechanical systems (MEMS), such as micro-biosensors and micro-antennas for biomedical and RF applications. 
    more » « less
  4. We propose a nanogap-enhanced phase-change waveguide with silicon PIN heaters. Thanks to the enhanced light-matter interaction in the nanogap, the proposed structure exhibits strong attenuation (Δα = ∼35 dB/µm) and optical phase (Δneff = ∼1.2) modulation atλ = 1550 nm when achieving complete phase transitions. We further investigate two active optical devices based on the proposed waveguide, including an electro-absorption modulator and a 1 × 2 directional-coupler optical switch. Finite-difference time-domain simulation of the proposed modulator shows a high extinction ratio of ∼17 dB at 1550 nm with an active segment of volume only ∼0.004λ3. By exploiting a directional coupler design, we present a 1 × 2 optical switch with an insertion loss of < 4 dB and a compact coupling length of ∼ 15 µm while maintaining small crosstalk less than −7.2 dB over an optical bandwidth of 50 nm. Thermal analysis shows that a 10 V pulse of 30 ns (1×1 modulator) and 55 ns (1×2 switch) in duration is required to raise the GST temperature of the phase-change waveguide above the melting temperature to induce the amorphization; however, the complete crystallization occurs by applying a 5 V pulse of 180 ns (1×1 modulator) and a 6 V pulse of 200 ns (1×2 switch), respectively. 
    more » « less
  5. null (Ed.)
    Among the layered two dimensional semiconductors, molybdenum disulfide (MoS 2 ) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light–matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response ( R ) and external quantum efficiency (EQE) of few-atomic layered MoS 2 phototransistors fabricated on a SiO 2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm–900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 10 3 A W −1 under white light illumination with an optical power P opt = 0.02 nW. The R value increased to 3.5 × 10 3 A W −1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 10 3 and 6 × 10 3 A W −1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 10 5 % and 10 6 % measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent–dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device. 
    more » « less