A versatile system for the fabrication of surface microstructures is demonstrated by combining the photomechanical response of supramolecular azopolymers with structured polarized illumination from a high resolution spatial light modulator. Surface relief structures with periods 900 nm - 16.5 µm and amplitudes up to 1.0 µm can be fabricated with a single 5 sec exposure at 488 nm. Sinusoidal, circular, and chirped surface profiles can be fabricated via direct programming of the spatial light modulator, with no optomechanical realignment required. Surface microstructures can be combined into macroscopic areas by mechanical translation followed by exposure. The surface structures grow immediately in response to illumination, can be visually observed in real time, and require no post-exposure processing.
A maskless single beam process for photofabrication of surface microstructures is reported. A continuously moving azopolymer film is illuminated with structured polarized light from a 488 nm laser and spatial light modulator, driving the formation of surface relief gratings in real time. The structures were replicated using nanoimprint lithography, and exhibited a maximum diffraction efficiency of order 30% at 633 nm. Using the period tunability of the spatial light modulator, surface gratings were fabricated that diffract red, green, and blue light along a common direction, illustrating the potential of this fabrication platform in the field of structured color.
more » « less- PAR ID:
- 10559862
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 32
- Issue:
- 26
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 47385
- Size(s):
- Article No. 47385
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Thin film supramolecular azopolymers support the all‐optical generation of dynamic surface microstructures. Using a spatial light modulator (SLM) illuminated at 488 nm, structured polarized light drives surface waves of sinusoidal profile with periods 700 nm–5 µm at speeds up to 1 µm s−1. Multiple regions on the film surface within the SLM focal plane can be independently set into motion, each with unique period, speed, amplitude, and propagation direction. The underlying mechanism is the photomechanical response of the azopolymer, which is more commonly exploited for the fabrication of static surface microstructures. Hydrogen‐bonded systems such as the supramolecular system described here are particularly advantageous due to their facile fabrication from commercially available components. In addition to applications in dynamic diffractive optics, this programmable system for optical surface waves is well‐suited for studies in nanoparticle manipulation, as well as in bioengineering as a reconfigurable surface template for directed cell growth.
-
Space-variant control of optical wavefronts is important for many applications in photonics, such as the generation of structured light beams, and is achieved with spatial light modulators. Commercial devices, at present, are based on liquid-crystal and digital micromirror technologies and are typically limited to kilohertz switching speeds. To realize significantly higher operating speeds, new technologies and approaches are necessary. Here we demonstrate two-dimensional control of free-space optical fields at a wavelength of 1,550 nm at a 1 GHz modulation speed using a programmable plasmonic phase modulator based on near-field interactions between surface plasmons and materials with an electrooptic response. High χ(2) and χ(3) dielectric thin films of either aluminium nitride or silicon-rich silicon nitride are used as an active modulation layer in a surface plasmon resonance configuration to realize programmable space-variant control of optical wavefronts in a 4 × 4 pixel array at high speed.more » « less
-
We present a frequency domain, AOM-based pulse shaper that utilizes Brewster prisms rather than the current standard of gratings. In doing so, we demonstrate a three-fold increase in efficiency and the ability to compensate for temporal dispersion created by the acousto-optic modulator that filters the pulse spectrum. The shaper is tested between the wavelengths of 520-660 and 840-1170 nm, creating sub-50 fs pulses for each, and used to collect a 2D white-light spectrum of a thin film of semiconducting carbon nanotubes.
-
We report the implementation of an interferometric null test using a high-definition spatial light modulator (SLM) as a reconfigurable alternative to a computer-generated hologram. We detail the alignment process chain, including novel techniques using the SLM to project alignment fiducials on the test part. To validate the alignment protocol, we measure a mild off-axis conic with the SLM-based system and cross-validate with conventional interferometry within 30 nm root-mean-square (RMS) surface figure. Finally, we report the null test of a 65 mm clear aperture concave freeform with 91 μm peak-valley sag departure from the base sphere. The measured surface figure of the freeform is within 40 nm RMS compared to the measurement with a commercial metrology instrument.