skip to main content


Title: Optical microstructure fabrication using structured polarized illumination

A versatile system for the fabrication of surface microstructures is demonstrated by combining the photomechanical response of supramolecular azopolymers with structured polarized illumination from a high resolution spatial light modulator. Surface relief structures with periods 900 nm - 16.5 µm and amplitudes up to 1.0 µm can be fabricated with a single 5 sec exposure at 488 nm. Sinusoidal, circular, and chirped surface profiles can be fabricated via direct programming of the spatial light modulator, with no optomechanical realignment required. Surface microstructures can be combined into macroscopic areas by mechanical translation followed by exposure. The surface structures grow immediately in response to illumination, can be visually observed in real time, and require no post-exposure processing.

 
more » « less
Award ID(s):
2024118 1919557
NSF-PAR ID:
10369123
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
5
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 7308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Thin film supramolecular azopolymers support the all‐optical generation of dynamic surface microstructures. Using a spatial light modulator (SLM) illuminated at 488 nm, structured polarized light drives surface waves of sinusoidal profile with periods 700 nm–5 µm at speeds up to 1 µm s−1. Multiple regions on the film surface within the SLM focal plane can be independently set into motion, each with unique period, speed, amplitude, and propagation direction. The underlying mechanism is the photomechanical response of the azopolymer, which is more commonly exploited for the fabrication of static surface microstructures. Hydrogen‐bonded systems such as the supramolecular system described here are particularly advantageous due to their facile fabrication from commercially available components. In addition to applications in dynamic diffractive optics, this programmable system for optical surface waves is well‐suited for studies in nanoparticle manipulation, as well as in bioengineering as a reconfigurable surface template for directed cell growth.

     
    more » « less
  2. Abstract

    Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5–45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due to the interaction of the propagating light in the evanescent field with glucose molecules. The coating of the TOF with gold nanoparticles (AuNPs) as an active layer for glucose sensing generated LSPR through the interaction of the evanescent wave with AuNPs deposited at the tapered waist. The results indicated that the TOF (Ø = 5 µm) exhibited improved sensing performance with a sensitivity of 1265%/RIU compared to the TOF (Ø = 12 µm) at 560%/RIU towards glucose. The AuNPs were characterized using scanning electron microscopy and ultraviolent-visible spectroscopy. The AuNPs-decorated TOF (Ø = 12 µm) demonstrated a high sensitivity of 2032%/RIU toward glucose. The AuNPs-decorated TOF sensor showed a sensitivity enhancement of nearly 4 times over TOF (Ø = 12 µm) with RI ranging from 1.328 to 1.393. The fabricated TOF enabled ultrasensitive glucose detection with good stability and fast response that may lead to next-generation ultrasensitive biosensors for real-world applications, such as disease diagnosis.

     
    more » « less
  3. Summary Lay Description

    Asphalt binder, or bitumen, is the glue that holds aggregate particles together to form a road surface. It is derived from the heavy residue that remains after distilling gasoline, diesel and other lighter products out of crude oil. Nevertheless, bitumen varies widely in composition and mechanical properties. To avoid expensive road failures, bitumen must be processed after distillation so that its mechanical properties satisfy diverse climate and load requirements. International standards now guide these mechanical properties, but yield varying long‐term performance as local source composition and preparation methods vary.In situdiagnostic methods that can predict bitumen performance independently of processing history are therefore needed. The present work focuses on one promising diagnostic candidate: microscopic observation of internal bitumen structure. Past bitumen microscopy has revealed microstructures of widely varying composition, size, shape and density. A challenge is distinguishing bulk microstructures, which directly influence a binder's mechanical properties, from surface microstructures, which often dominate optical microscopy because of bitumen's opacity and scanning‐probe microscopy because of its inherent surface specificity. In previously published work, we used infrared microscopy to enhance visibility of bulk microstructure. Here, as a foil to this work, we use visible‐wavelength microscopy together with atomic‐force microscopy (AFM) specifically to isolatesurfacemicrostructure, to understand its distinct origin and morphology, and to demonstrate its unique sensitivity to surface alterations. To this end, optical microscopy complements AFM by enabling us to observe surface microstructures form at temperatures (50°C–70°C) at which bitumen's fluidity prevents AFM, and to observe surface microstructure beneath transparent, but chemically inert, liquid (glycerol) and solid (glass) overlayers, which alter surface tension compared to free surfaces. From this study, we learned, first, that, as bitumen cools, distinctly wrinkled surface microstructures form at the same temperature at which independent calorimetric studies showed crystallization in bitumen, causing it to release latent heat of crystallization. This shows that surface microstructures are likely precipitates of the crystallizable component(s). Second, a glycerol overlayer on the cooling bitumen results in smaller, less wrinkled, sparser microstructures, whereas a glass overlayer suppresses them altogether. In contrast, underlying smaller bulk microstructures are unaffected. This shows that surface tension is the driving force behind formation and wrinkling of surface precipitates. Taken together, the work advances our ability to diagnose bitumen samples noninvasively by clearly distinguishing surface from bulk microstructure.

     
    more » « less
  4. Abstract

    Local laser‐induced oxidation is an extremely valuable technique to perform high‐throughput optimization across multidimensional parameter sets. In this work, a versatile method is presented for the synthesis of titanium dioxide (TiO2) thin‐films with varying crystalline structures through the use of localized, visible, continuous‐wave laser‐processing. By controlling the laser intensity and the exposure time, the conversion of amorphous titanium disulfide (a‐TiS2) precursor films into distinct phases of TiO2is achieved and a laser‐induced oxidation phase diagram is constructed with the resulting material phases, including anatase, rutile, and black TiO2. By utilizing the dependence of phase formation on the rate and duration of laser energy input, mixtures of anatase and rutile phases are fabricated with controlled spatial arrangements. Photocatalytic properties of the synthesized films are evaluated using the degradation of nitrogen oxide (NOx) gas under UV illumination and an organic dye under white‐light illumination, revealing that mixtures of anatase and rutile phases demonstrate superior photocatalytic activity. The laser‐induced oxidation method highlighted showcases a strategy for precisely tailored phase composition for directly tunable properties, paving the way for in‐depth studies into structure‐property relationships in photocatalysis and other applications of metal oxide films.

     
    more » « less
  5. Periodic diffractive elements known as metasurfaces constitute platform technology whereby exceptional optical properties, not attainable by conventional means, are attained. Generally, with increasing unit-cell complexity, there emerges a wider design space and bolstered functional capability. Advanced devices deploying elaborate unit cells are typically generated by electron-beam patterning which is a tedious, slow process not suitable for large surfaces and quick turnaround. Ameliorating this condition, we present a novel route towards facile fabrication of complex periodic metasurfaces based on sequential exposures by laser interference lithography. Our method is fast, cost-effective, and can be applied to large surface areas. It is enabled by precise control over periodicity and exposure energy. With it we have successfully patterned and fabricated one-dimensional (1D) and two-dimensional (2D) multipart unit cell devices as demonstrated here. Thus, zero-order transmission spectra of an etched four-part 1D grating device are simulated and measured for both transverse-electric (TE) and transverse-magnetic (TM) polarization states of normally incident light. We confirm non-resonant wideband antireflection (∼800 nm) for TM-polarized light and resonance response for TE-polarized light in the near-IR band spanning 1400-2200 nm in a ∼100 mm2device. Furthermore, it is shown that this method of fabrication can be implemented not only to pattern periodic symmetric/asymmetric designs but also to realize non-periodic metasurfaces. The method will be useful in production of large-area photonic devices in the realm of nanophotonics and microphotonics.

     
    more » « less