skip to main content


Title: The genetic basis of floral mechanical isolation between two hummingbird‐pollinated Neotropical understorey herbs
Abstract

Floral divergence can contribute to reproductive isolation among plant lineages, and thus provides an opportunity to study the genetics of speciation, including the number, effect size, mode of action and interactions of quantitative trait loci (QTL). Moreover, flowers represent suites of functionally interrelated traits, but it is unclear to what extent the phenotypic integration of the flower is underlain by a shared genetic architecture, which could facilitate or constrain correlated evolution of floral traits. Here, we examine the genetic architecture of floral morphological traits involved in an evolutionary switch from bill to forehead pollen placement between two species of hummingbird‐pollinated Neotropical understorey herbs that are reproductively isolated by these floral differences. For the majority of traits, we find multiple QTL of relatively small effect spread throughout the genome. We also find substantial colocalization and alignment of effects of QTL underlying different floral traits that function together to promote outcrossing and reduce heterospecific pollen transfer. Our results are consistent with adaptive pleiotropy or linkage of many co‐adapted genes, either of which could have facilitated a response to correlated selection and helped to stabilize divergent phenotypes in the face of low levels of hybridization. Moreover, our results indicate that floral mechanical isolation can be consistent with an infinitesimal model of adaptation.

 
more » « less
Award ID(s):
1737889 0947138 1737848 1737771
NSF-PAR ID:
10369611
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
31
Issue:
16
ISSN:
0962-1083
Page Range / eLocation ID:
p. 4351-4363
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The floras on chemically and physically challenging soils, such as gypsum, shale, and serpentine, are characterized by narrowly endemic species. The evolution of edaphic endemics may be facilitated or constrained by genetic correlations among traits contributing to adaptation and reproductive isolation across soil boundaries. The yellow monkeyflowers in the Mimulus guttatus species complex are an ideal system in which to examine these evolutionary patterns. To determine the genetic basis of adaptive and prezygotic isolating traits, we performed genetic mapping experiments with F2 hybrids derived from a cross between a serpentine endemic, M. nudatus, and its close relative M. guttatus. Few large effect and many small effect QTL contribute to interspecific divergence in life history, floral, and leaf traits, and a history of directional selection contributed to trait divergence. Loci contributing to adaptive traits and prezygotic reproductive isolation overlap, and their allelic effects are largely in the direction of species divergence. These loci contain promising candidate genes regulating flowering time and plant organ size. Together, our results suggest that genetic correlations among traits can facilitate the evolution of adaptation and speciation and may be a common feature of the genetic architecture of divergence between edaphic endemics and their widespread relatives.

     
    more » « less
  2. Abstract

    Floral attraction traits can significantly affect pollinator visitation patterns, but adaptive evolution of these traits may be constrained by correlations with other traits. In some cases, molecular pathways contributing to floral attraction are well characterized, offering the opportunity to explore loci potentially underlying variation among individuals. Here, we quantify the range of variation in floralUVpatterning (i.e.UV‘bulls‐eye nectar guides) among crop and wild accessions ofBrassica rapa. We then use experimental crosses to examine the genetic architecture, candidate loci and biochemical underpinnings of this patterning as well as phenotypic manipulations to test the ecological impact. We find qualitative variation inUVpatterning between wild (commonly lackingUVpatterns) and crop (commonly exhibitingUVpatterns) accessions. Similar to the majority of crops, recombinant inbred lines (RILs) derived from an oilseed crop × WIfast‐plant®cross exhibitUVpatterns, the size of which varies extensively among genotypes. InRILs, we further observe strong statistical‐genetic andQTLcorrelations within petal morphological traits and within measurements of petalUVpatterning; however, correlations between morphology andUVpatterning are weak or nonsignificant, suggesting thatUVpatterning is regulated and may evolve independently of overall petal size.HPLCanalyses reveal a high concentration of sinapoyl glucose inUV‐absorbing petal regions, which, in concert with physical locations ofUV‐traitQTLs, suggest a regulatory and structural gene as candidates underlying observed quantitative variation. Finally, insects prefer flowers withUVbulls‐eye patterns over those that lack patterns, validating the importance ofUVpatterning in pollen‐limited populations ofB. rapa.

     
    more » « less
  3. Summary

    Genetic correlations among different components of phenotypes, especially those resulting from pleiotropy, can constrain or facilitate trait evolution. These factors could especially influence the evolution of traits that are functionally integrated, such as those comprising the flower. Indeed, pleiotropy is proposed as a main driver of repeated convergent trait transitions, including the evolution of phenotypically similar pollinator syndromes.

    We assessed the role of pleiotropy in the differentiation of floral and other reproductive traits between two species –Jaltomata sinuosaandJ. umbellata(Solanaceae) – that have divergent suites of floral traits consistent with bee and hummingbird pollination, respectively. To do so, we generated a hybrid population and examined the genetic architecture (trait segregation and quantitative trait locus (QTL) distribution) underlying 25 floral and fertility traits.

    We found that most floral traits had a relatively simple genetic basis (few, predominantly additive,QTLs of moderate to large effect), as well as little evidence of antagonistic pleiotropy (few trait correlations andQTLcolocalization, particularly between traits of different classes). However, we did detect a potential case of adaptive pleiotropy among floral size and nectar traits.

    These mechanisms may have facilitated the rapid floral trait evolution observed withinJaltomata, and may be a common component of rapid phenotypic change more broadly.

     
    more » « less
  4. Abstract

    The genetic architecture of local adaptation has been of central interest to evolutionary biologists since the modern synthesis. In addition to classic theory on the effect size of adaptive mutations by Fisher, Kimura and Orr, recent theory addresses the genetic architecture of local adaptation in the face of ongoing gene flow. This theory predicts that with substantial gene flow between populations local adaptation should proceed primarily through mutations of large effect or tightly linked clusters of smaller effect loci. In this study, we investigate the genetic architecture of divergence in flowering time, mating system‐related traits, and leaf shape betweenMimulus laciniatusand a sympatric population of its close relativeM. guttatus. These three traits are probably involved inM. laciniatus’adaptation to a dry, exposed granite outcrop environment. Flowering time and mating system differences are also reproductive isolating barriers making them ‘magic traits’. Phenotypic hybrids in this population provide evidence of recent gene flow. Using next‐generation sequencing, we generate denseSNPmarkers across the genome and map quantitative trait loci (QTLs) involved in flowering time, flower size and leaf shape. We find that interspecific divergence in all three traits is due to fewQTLof large effect including a highly pleiotropicQTLon chromosome 8. ThisQTLregion contains the pleiotropic candidate gene TCP4 and is involved in ecologically important phenotypes in otherMimulusspecies. Our results are consistent with theory, indicating that local adaptation and reproductive isolation with gene flow should be due to few loci with large and pleiotropic effects.

     
    more » « less
  5. Summary

    Although the evolution of the selfing syndrome often involves reductions in floral size, pollen and nectar, few studies of selfing syndrome divergence have examined nectar. We investigate whether nectar traits have evolved independently of other floral size traits in the selfing syndrome, whether nectar traits diverged due to drift or selection, and the extent to which quantitative trait locus (QTL) analyses predict genetic correlations.

    We use F5 recombinant inbred lines (RILs) generated from a cross betweenIpomoea cordatotrilobaandIpomoea lacunosa. We calculate genetic correlations to identify evolutionary modules, test whether trait divergence was due to selection, identify QTLs and perform correlation analyses to evaluate how well QTL properties reflect genetic correlations.

    Nectar and floral size traits form separate evolutionary modules. Selection has acted to reduce nectar traits in the selfingI. lacunosa. Genetic correlations predicted from QTL properties are consistent with observed genetic correlations.

    Changes in floral traits associated with the selfing syndrome reflect independent evolution of at least two evolutionary modules: nectar and floral size traits. We also demonstrate directional selection on nectar traits, which is likely to be independent of selection on floral size traits. Our study also supports the expected mechanistic link between QTL properties and genetic correlations.

     
    more » « less