Two-color laser beams are instrumental in light-field control and enhancement of high-order harmonic, spectral supercontinuum, and terahertz radiation generated in gases, plasmas, and solids. We demonstrate a multi-terawatt two-color beam produced using a relativistic plasma mirror, with 110 mJ at 800 nm and 30 mJ at 400 nm. Both color components have high spatial quality and can be simultaneously focused, provided that the plasma mirror lies within a Rayleigh range of the driving fundamental beam. Favorable scaling of second-harmonic generation by plasma mirrors at relativistic intensities suggests them as an excellent tool for multi-color waveform synthesis beyond the petawatt level.
more » « less- Award ID(s):
- 1806911
- PAR ID:
- 10371627
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 45
- Issue:
- 23
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 6542
- Size(s):
- Article No. 6542
- Sponsoring Org:
- National Science Foundation
More Like this
-
High intensity, laser solid interactions are capable of generating attosecond light bursts via high harmonic generation, most work focuses on single beam interactions. In this study, we perform a numerical investigation on the role of wavelength and polarization in relativistic, high harmonic generation from normal-incidence, two-beam interactions off plasma mirrors. We find that the two-beam harmonic generation mechanism is a robust process described by a set of well-defined selection rules. We demonstrate that the emitted harmonics from normal incidence interactions exhibit an intensity optimization when the incident fields are of equal intensity for two-color circularly-polarized fields.more » « less
-
We report on the experimental results of a passively mode-locked vertical external cavity surface emitting laser (VECSEL), implemented in a W-cavity configuration, using a lithium triborate (LBO) crystal for intra-cavity second harmonic generation (SHG) at 528 nm. The W-cavity configuration allows separation of the crystal from the semiconductor saturable absorber mirror (SESAM), enabling independent control over the Gaussian beam sizes at the crystal, chip, and SESAM. This optimized cavity demonstrated a second harmonic pulse width of ~760 fs at a frequency of 465 MHz and 230 mW average output power, resulting in a peak pulse power of 580 W.
-
Abstract While nearly all investigations of high order harmonic generation with relativistically intense laser pulses have taken place at 800 or 1053 nm, very few experimental studies have been done at other wavelengths. In this study, we investigate the scaling of relativistic high harmonic generation towards longer wavelengths at intensities of
a 0 ∼ 1. Longer driver wavelengths enable enhanced diagnostics of the harmonic emission, as multiple orders lie in the optical regime. We measure the conversion efficiency by collecting the entire harmonic emission as well as the divergence through direct imaging. We compare the emission with 2D particle-in-cell simulations to determine the experimental target conditions. This new regime of high order harmonic generation also enables relativistic scaling as well as improved discrimination of harmonic generation mechanisms. -
When a moderately intense, few-picosecond-long laser pulse ionizes gas to produce an underdense plasma column, a linear relativistic plasma wave or wake can be excited by the self-modulation instability that may prove useful for multi-bunch acceleration of externally injected electrons or positrons to high energies in a short distance. At the same time, due to the anisotropic temperature distributions of the ionized plasma electrons, the Weibel instability can self-generate magnetic fields throughout such a plasma on a few picoseconds timescale that can persist even longer than the lifetime of the wake. In the present paper, we first show using simulations that both these effects do indeed co-exist in space and time in the plasma. Using our simulations, we make preliminary estimates of the contribution to the transverse emittance growth of an externally injected beam due to the Weibel magnetic fields in a few-millimeter-long plasma. We then present the results of an experiment that has allowed us to measure the spatiotemporal evolution of the magnetic fields using an ultrashort relativistic electron probe beam. Both the topology and the lifetime of the Weibel instability induced magnetic fields in the experiment are in reasonable agreement with the fields induced by the Weibel instability in the simulations.
-
Pilat, Fulvia ; Fischer, Wolfram ; Saethre, Robert ; Anisimov, Petr ; Andrian, Ivan (Ed.)A large challenge with Plasma Wakefield Acceleration lies in creating a plasma with a profile and length that properly match the electron beam. Using a laser-ionized plasma source provides control in creating an appropriate plasma density ramp. Additionally, using a laser-ionized plasma allows for an accelerator to run at a higher repetition rate. At the Facility for Advanced Accelerator Experimental Tests, at SLAC National Accelerator Laboratory, we ionize hydrogen gas with a 225 mJ, 50 fs, 800 nm laser pulse that passes through an axicon lens, imparting a conical phase on the pulse that produces a focal spot with an intensity distribution described radially by a Bessel function. This paper overviews the diagnostic tests used to characterize and optimize the focal spot along the meter-long focus. In particular, we observe how wavefront aberrations in the laser pulse impact the peak intensity of the focal spot. Furthermore, we discuss the impact of nonlinear effects caused by a 6 mm, CaF2 vacuum window in the laser beam line.more » « less