Core/shell nanoparticles composed of a silica core over which a propargyl methacrylate (PMA) shell was polymerized around were synthesized. To employ the shell coating, the surface of the silica nanoparticles (SiNPs) was modified with an alkene-terminated organometallic silane linker that allowed for the covalent attachment of a poly(propargyl methacrylate) (pPMA) shell. The alkyne groups resulting from the pPMA shell were utilized in copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reactions to attach azide-modified Förster resonance energy transfer (FRET) pairs of naphthalimide (azNap), rhodamine B (azRhod), and silicon phthalocyanine (azSiPc) derivatives to the shell surface. The luminescence of the system was manipulated by the covalent attachment of one, two, or three of the fluorophores resulting in no energy transfer, one energy transfer, or two energy transfers, respectively. When all three fluorophores were attached to the core/shell particles, an excitation of azNap with a wavelength of 400 nm resulted in the sequential energy transfer between two FRET pairs and the sole emission of azSiPc at 670 nm. These particles may have applications as bioimaging probes as their luminescence is easily detected using fluorescence microscopy.
more »
« less
Energy Transfer Chemiluminescent Spiroadamantane 1,2‐Dioxetane Probes for Bioanalyte Detection and Imaging
Abstract Chemiluminescence imaging of bioanalytes using spiroadamantane 1,2‐dioxetanes has gained significant attention due to improved signal‐to‐noise ratios and imaging depth compared to excitation‐based probes, as well as their modifiable scaffolds that offer analyte‐specific responses and tunable emissive properties. Among several strategies employed to amplify signals under aqueous conditions and to shift the emission into the bio‐relevant red region, energy transfer to an adjacent fluorophore is a popular and effective method. This Minireview highlights spiroadamantane 1,2‐dioxetane‐based probes that operate via an energy transfer mechanism to detect bioanalytes both in vitro and in vivo. Probes that display both non‐covalent and covalent interactions with fluorophores, as well as their applications in imaging specific analytes will be discussed.
more »
« less
- Award ID(s):
- 1653474
- PAR ID:
- 10373584
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 134
- Issue:
- 42
- ISSN:
- 0044-8249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hydrogen sulfide (H2S), once regarded solely as a highly toxic gas, is now recognized as a crucial signaling molecule in plants, bacteria, and mammals. In humans, H2S signaling plays a role in numerous physiological and pathological processes, including vasodilation, neuromodulation, and cytoprotection. To exploit its biological functions and therapeutic potential, a wide range of H2S-releasing compounds, known as H2S donors, have been developed. These donors are designed to release H2S under physiological conditions in a controlled manner. Among them, self-reporting H2S donors are seen as a particularly innovative class, combining therapeutic delivery with real-time fluorescence-based detection. This dual functionality enables spatiotemporal monitoring of H2S release in biological environments, eliminating the need for additional sensors or probes that could disrupt cellular homeostasis. This review summarizes recent advancements in self-reporting H2S donor systems, organizing them based on their activation triggers, such as specific bioanalytes, enzymes, or external stimuli like light. The discussion covers their design strategies, performance in biological applications, and therapeutic potential. Key challenges are also highlighted, including the need for precise control of H2S release kinetics, accurate signal quantification, and improved biocompatibility. With continued refinement, self-reporting H2S donors offer great promise for creating multifunctional platforms that seamlessly integrate diagnostic imaging with therapeutic H2S delivery.more » « less
-
From local mode stretching force constants and topological electron density analysis, computed at either the UM06/6-311G(d,p), UM06/SDD, or UM05-2X/6– 31++G(d,p) level of theory, we elucidate on the nature/strength of the parallel π- stacking interactions (i.e. pancake bonding) of the 1,2-dithia-3,5-diazolyl dimer, 1,2-diselena-3,5-diazolyl dimer, 1,2-tellura-3,5-diazolyl dimer, phenalenyl dimer, 2,5,8-tri-methylphenalenyl dimer, and the 2,5,8-tri-t-butylphenalenyl dimer. We use local mode stretching force constants to derive an aromaticity delocalization index (AI) for the phenalenyl-based dimers and their monomers as to determine the effect of substitution and dimerization on aromaticity, as well as determining what bond property governs alterations in aromaticity. Our results reveal the strength of the C⋯C contacts and of the rings of the di-chalcodiazoyl dimers investigated decrease in parallel with decreasing chalcogen⋯chalcogen bond strength. Energy density values Hb suggest the S⋯S and Se⋯Se pancake bonds of 1,2-dithia-3,5- diazolyl dimer and the 1,2-diselena-3,5-diazolyl dimer are covalent in nature. We observe the pancake bonds, of all phenalenyl-based dimers investigated, to be electrostatic in nature. In contrast to their monomer counterparts, phenalenyl- based dimers increase in aromaticity primarily due to CC bond strengthening. For phenalenyl-based dimers we observed that the addition of bulky substituents steadily decreased the system aromaticity predominately due to CC bond weakening.more » « less
-
Abstract Cell organelles feature characteristic lipid compositions that lead to differences in membrane properties. In living cells, membrane ordering and fluidity are commonly measured using the solvatochromic dye Laurdan, whose fluorescence is sensitive to membrane packing. As a general lipophilic dye, Laurdan stains all hydrophobic environments in cells, so it is challenging to characterize membrane properties in specific organelles or assess their responses to pharmacological treatments in intact cells. Here, we describe the synthesis and application of Laurdan-derived probes that read out membrane packing of individual cellular organelles. The set of Organelle-targeted Laurdans (OTL) localizes to the ER, mitochondria, lysosomes and Golgi compartments with high specificity, while retaining the spectral resolution needed to detect biological changes in membrane packing. We show that ratiometric imaging with OTL can resolve membrane heterogeneity within organelles, as well as changes in membrane packing resulting from inhibition of lipid trafficking or bioenergetic processes. We apply these probes to characterize organelle-specific responses to saturated lipid stress. While ER and lysosomal membrane fluidity is sensitive to exogenous saturated fatty acids, that of mitochondrial membranes is protected. We then use differences in ER membrane fluidity to sort populations of cells based on their fatty acid diet, highlighting the ability of organelle-localized solvatochromic probes to distinguish between cells based on their metabolic state. These results expand the repertoire of targeted membrane probes and demonstrate their application to interrogating lipid dysregulation.more » « less
-
Abstract As the field of theranostics expands, an imminent need arises for multifaceted polymer‐based nanotechnologies for clinical application. In this work, reversible addition‐fragmentation chain transfer (RAFT) aqueous emulsion polymerization is used to form19F‐containing amphiphilic hybrid block copolymers (HBCs). Employing a cationic dendritic macromolecular chain transfer agent (mCTA), polymer frameworks comprised of chemically distinctive blocks of differing architectures (i.e., dendritic and grafted/linear) are strategically designed and synthesized. In aqueous media, self‐assembled polymer nanoparticles (PNPs) are formed. Their physicochemical properties and their potential as biomaterials for MRI applications are assessed. By showcasing a newly established mCTA and using these resulting PNPs as imaging probes, the work expands the design space of RAFT polymerization in biomedical research, paving the way for the development of more effective and versatile MRI imaging tools.more » « less
An official website of the United States government
