skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flexibility and rigidity of free boundary MHD equilibria
Abstract We study stationary free boundary configurations of an ideal incompressible magnetohydrodynamic fluid possessing nested flux surfaces. In 2D simply connected domains, we prove that if the magnetic field and velocity field are never commensurate, the only possible domain for any such equilibria is a disk, and the velocity and magnetic field are circular. We give examples of non-symmetric equilibria occupying a domain of any shape by imposing an external magnetic field generated by a singular current sheet charge distribution (external coils). Some results carry over to 3D axisymmetric solutions. These results highlight the importance of external magnetic fields for the existence of asymmetric equilibria.  more » « less
Award ID(s):
2106233
PAR ID:
10373904
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nonlinearity
Volume:
35
Issue:
5
ISSN:
0951-7715
Page Range / eLocation ID:
2363 to 2384
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A dilute magnetic emulsion under the combined action of a uniform external magnetic field and a small amplitude oscillatory shear is studied using numerical simulations. We consider a three-dimensional domain with a single ferrofluid droplet suspended in a non-magnetizable Newtonian fluid. We present results of droplet shape and orientation, viscoelastic functions and bulk emulsion magnetization as functions of the shear oscillation frequency, magnetic field intensity and orientation. We also investigate how the magnetic field induces mechanical anisotropy by producing internal torques in oscillatory conditions. We found that, when the magnetic field is parallel to the shear plane, the droplet shape is mostly independent of the shear oscillation frequency. Regarding the viscometric functions, we show how the external magnetic field modifies the storage and loss moduli, especially for a field aligned to the main velocity gradient. The bulk emulsion magnetization is studied in the same fashion as the viscoelastic functions of the oscillatory shear. We show that the in-phase component of the magnetization with respect to the shear rate reaches a saturation magnetization, at the high frequencies limit, dependent on the magnetic field intensity and orientation. On the other hand, we found a non-zero out-of-phase response, which indicates a finite emulsion magnetization relaxation time. Our results indicate that the magnetization relaxation is closely related to the mechanical relaxation for dilute magnetic emulsions under oscillatory shear. 
    more » « less
  2. In viscous dynamics, velocity is proportional to the force. An ideal memristor is a device whose resistance changes at a rate proportional to the driving input. We present a proof-of-principle demonstration of the connection between viscous dynamics and memristive functionality by utilizing a thin-film ferromagnet/antiferromagnet bilayer, where viscous magnetization dynamics results from the frustration at the magnetic interface, and driving is provided by an external magnetic field. Thanks to the atomic scale of frustration effects, the presented approach is amenable to downscaling. It can also be adapted for electronic driving by spin torque, making it attractive for applications in neuromorphic circuits. 
    more » « less
  3. Walker, Gilbert C (Ed.)
    In fabricating new colloid-based materials via bottom-up design, particle–particle interactions are engineered to encourage the formation of the desired assemblies. One way to do this is to apply an external field, which orients magnetically polarized particles in the field direction. External fields have the advantage that they can be programmed to change in time (e.g., field rotation or toggling), tunably shifting the system away from equilibrium. Here, we apply a model for ferromagnetic colloidal rods that simulates their phase behavior in the presence of an external magnetic field with constant strength and direction. An annealing process slowly reduces the temperature during molecular dynamics simulations to estimate the system’s equilibrium configuration in the ground state when the magnetic interactions between colloidal rods dominate the thermal forces. Numerous annealing simulations are performed at various particle densities and external field strengths. In the absence of an external field, the magnetic rods assemble into antiparallel configurations. When the strength of the external field is sufficiently strong, the magnetic rods are forced to orient in the direction of the field and therefore form head-to-tail structures. The formation of a head-to-tail state is associated with a net magnetic moment that results from the collective alignment of all magnetic particles in the field direction. Furthermore, when systems of magnetic rods assemble into a head-to-tail state, they occupy more space than they do in a phase in which most rods are assembled into antiparallel configurations. Phase diagrams predict that the magnetic properties of systems of rod-like magnetic particles can switch between magnetic and nonmagnetic states by tuning not only the external field strength but also the particle density. 
    more » « less
  4. Gagliardi, Laura (Ed.)
    Colloidal particles with anisotropic geometries and interactions display rich phase behavior and hence have the potential to serve as the basis of functional materials, which can tunably and reversibly self-assemble into different configurations. External fields are one design parameter that can be used to manipulate how systems of colloidal particles assemble with one another. One challenge in designing new materials using anisotropic colloidal particles is understanding how an individual particle’s various anisotropic features, like geometry, affect their overall self-assembly. Here, we present the results of simulation studies that explore the self-assembly of 2D colloidal squares with offset magnetic dipoles in the presence of an external field. Annealing simulations are used to measure the equilibrium-phase behavior of systems of these particles in the ground state, when the magnetic interactions dominate over the thermal forces of the system. We find that the magnetic properties of these systems are strongly influenced by the relative number of squares with opposite “handedness”, or chirality, that are present within the system. Systems of squares that contain equal numbers of either chirality are extremely responsive to the external field; a relatively weak external field is required to magnetize them. In contrast, systems that contain only one chirality of squares are significantly less responsive to the external field; a significantly stronger external field is required to elicit the same magnetic response. Ultimately, the differing macroscopic magnetic properties of these systems are related to their microscopic self- assembly in an external field. Simulation snapshots and ground state phase diagrams illustrate how the absence of opposite chirality squares prevents systems of these particles from leaving an energetically favorable antiparallel configuration in the presence of an external field. When opposite chirality squares are present, these magnetic particles assemble into a head-to-tail configuration, therefore inducing a magnetic state 
    more » « less
  5. Abstract Knowledge of the thermodynamic equilibria and domain structures of ferroelectrics is critical to establishing their structure–property relationships that underpin their applications from piezoelectric devices to nonlinear optics. Here, we establish the strain condition for strain phase separation and polydomain formation and analytically predict the corresponding domain volume fractions and wall orientations of, relatively low symmetry and theoretically more challenging, monoclinic ferroelectric thin films by integrating thermodynamics of ferroelectrics, strain phase equilibria theory, microelasticity, and phase‐field method. Using monoclinic KxNa1 − xNbO3(0.5 < x < 1.0) thin films as a model system, we establish the polydomain strain–strain phase diagrams, from which we identify two types of monoclinic polydomain structures. The analytically predicted strain conditions of formation, domain volume fractions, and domain wall orientations for the two polydomain structures are consistent with phase‐field simulations and in good agreement with experimental results in the literature. The present study demonstrates a general, powerful analytical theoretical framework to predict the strain phase equilibria and domain wall orientations of polydomain structures applicable to both high‐ and low‐symmetry ferroelectrics and provide fundamental insights into the equilibrium domain structures of ferroelectric KxNa1 − xNbO3thin films that are of technology relevance for lead‐free dielectric and piezoelectric applications. 
    more » « less