skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A hierarchical deep learning framework for combined rolling bearing fault localization and identification with data fusion
Fault diagnosis of rolling bearings becomes an important research subject, where the data-driven deep learning-based techniques have been extensively exploited. While the state-of-the-art research has shown the substantial progresses in bearing fault diagnosis, they mostly were implemented upon the hypothesis that the location of bearing prone to failure already is known. Nevertheless, in actual practice many rolling bearings are installed in a complex machinery system, any of which is likely subject to fault. As such, fault diagnosis essentially is a process to achieve both fault localization and identification, which results in many fault scenarios to be handled. This will significantly degrade the fault diagnosis performance using conventional deep learning analysis. In this research, we aim to develop a new deep learning framework to address abovementioned challenge. We particularly design a hierarchical deep learning framework consisting of multiple sequentially deployed deep learning models built upon the transfer learning. This can improve the learning adequacy for a high-dimensional problem with many fault scenarios involved even under limited dataset, thereby enhancing the fault diagnosis performance. Without the prior knowledge regarding the fault location, this methodology is greatly favored by the sensor/data fusion which takes full advantage of the enriched pivot fault-related features in the measurements acquired from different accelerometers. Systematic case studies using the publicly accessible experimental rolling bearing dataset are carried out to validate this new methodology.  more » « less
Award ID(s):
2138522
PAR ID:
10373944
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Vibration and Control
ISSN:
1077-5463
Page Range / eLocation ID:
107754632210916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Timely and accurate bearing fault detection plays an important role in various industries. Data-driven deep learning methods have recently become a prevailing approach for bearing fault detection. Despite the success of deep learning, fault diagnosis performance is hinged upon the size of labeled data, the acquisition of which oftentimes is expensive in actual practice. Unlabeled data, on the other hand, are inexpensive. To fully utilize a large amount of unlabeled data together with limited labeled data to enhance fault detection performance, in this research, we develop a semi-supervised learning method built upon the autoencoder. In this method, a joint loss is established to account for the effects of both the labeled and unlabeled data, which is subsequently used to direct the backpropagation training. Systematic case studies using the Case Western Reserve University (CWRU) rolling bearing dataset are carried out, in which the effectiveness of this new method is verified by comparing it with other benchmark models. 
    more » « less
  2. Rolling bearing is a critical component of machinery that has been widely applied in manufacturing, transportation, aerospace, and power and energy industries. The timely and accurate bearing fault detection thus is of vital importance. Computational data-driven deep learning has recently become a prevailing approach for bearing fault detection. Despite the progress of the deep learning approach, the deep learning performance is hinged upon the size of labeled data, the acquisition of which is expensive in actual implementation. Unlabeled data, on the other hand, are inexpensive. In this research, we develop a new semi-supervised learning method built upon the autoencoder to fully utilize a large amount of unlabeled data together with limited labeled data to enhance fault detection performance. Compared with the state-of-the-art semi-supervised learning methods, this proposed method can be more conveniently implemented with fewer hyperparameters to be tuned. In this method, a joint loss is established to account for the effects of labeled and unlabeled data, which is subsequently used to direct the backpropagation training. Systematic case studies using the Case Western Reserve University (CWRU) rolling bearing dataset are carried out, in which the effectiveness of this new method is verified by comparing it with other well-established baseline methods. Specifically, nearly all emulation runs using the proposed methodology can lead to around 2%–5% accuracy increase, indicating its robustness in performance enhancement. 
    more » « less
  3. Abstract The fault diagnosis of bearing in machinery system plays a vital role in ensuring the normal operating performance of system. Machine learning-based fault diagnosis using vibration measurement recently has become a prevailing approach, which aims at identifying the fault through exploring the correlation between the measurement and respective fault. Nevertheless, such correlation will become very complex for the practical scenario where the system is operated under time-varying conditions. To fulfill the reliable bearing fault diagnosis under time-varying condition, this study presents a tailored deep learning model, so called deep long short-term memory (LSTM) network. By fully exploiting the strength of this model in characterizing the temporal dependence of time-series vibration measurement, the negative consequence of time-varying conditions can be minimized, thereby improving the diagnosis performance. The published bearing dataset with various time-varying operating speeds is utilized in case illustrations to validate the effectiveness of proposed methodology. 
    more » « less
  4. Early fault detection in rolling element bearings is pivotal for the effective predictive maintenance of rotating machinery. Deep Learning (DL) methods have been widely studied for vibration-based bearing fault diagnostics largely because of their capability to automatically extract fault-related features from raw or processed vibration data. Although most DL models in the current literature can provide fairly accurate classification outputs, the typical diagnostic procedure is performed in an offline environment utilizing powerful computers. This centralized approach can lead to unacceptable delays in safety-critical applications and can prohibit cost-sensitive wireless data collection. Meanwhile, very few studies have reported on deploying DL models on microprocessor-based Industrial Internet of Things (IIoT) devices, where edge computing can give users a real-time evaluation of bearing health without requiring expensive computational infrastructure. This paper demonstrates an IIoT deployment of a physics-informed DL model inside a commercially available wireless vibration sensor for online health classification. The diagnostic model here is developed and trained offline, and the trained model is then deployed inside the embedded system for online prediction. We demonstrate the model’s online diagnostic performance by imitating bearing vibration signals on a vibration shaker and by performing edge computing on the embedded system mounted on the shaker. 
    more » « less
  5. Failure prognostics is the process of predicting the remaining useful life (RUL) of machine components, which is vital for the predictive maintenance of industrial machinery. This paper presents a new deep learning approach for failure prognostics of rolling element bearings based on a Long Short-Term Memory (LSTM) predictor trained simultaneously within a Generative Adversarial Network (GAN) architecture. The LSTM predictor takes the current and past observations of a well-defined health index as an input, uses those to forecast the future degradation trajectory, and then derives the RUL. Our proposed approach has three unique features: (1) Defining the bearing failure threshold by adopting an International Organization of Standardization (ISO) standard, making the approach industry-relevant; (2) Employing a GAN-based data augmentation technique to improve the accuracy and robustness of RUL prediction in cases where the deep learning model has access to only a small amount of training data; (3) Integrating the training process of the LSTM predictor within the GAN architecture. A joint training approach is utilized to ensure that the LSTM predictor model learns both the original and artificially generated data to capture the degradation trajectories. We utilize a publicly available accelerated run-to-failure dataset of rolling element bearings to assess the performance of the proposed approach. Results of a five-fold cross-validation study show that the integration of the LSTM predictor with GAN helps to decrease the average RUL prediction error by 29% over a simple LSTM model without GAN implementation. 
    more » « less