We consider the periodic review dynamic pricing and inventory control problem with fixed ordering cost. Demand is random and price dependent, and unsatisfied demand is backlogged. With complete demand information, the celebrated [Formula: see text] policy is proved to be optimal, where s and S are the reorder point and order-up-to level for ordering strategy, and [Formula: see text], a function of on-hand inventory level, characterizes the pricing strategy. In this paper, we consider incomplete demand information and develop online learning algorithms whose average profit approaches that of the optimal [Formula: see text] with a tight [Formula: see text] regret rate. A number of salient features differentiate our work from the existing online learning researches in the operations management (OM) literature. First, computing the optimal [Formula: see text] policy requires solving a dynamic programming (DP) over multiple periods involving unknown quantities, which is different from the majority of learning problems in OM that only require solving single-period optimization questions. It is hence challenging to establish stability results through DP recursions, which we accomplish by proving uniform convergence of the profit-to-go function. The necessity of analyzing action-dependent state transition over multiple periods resembles the reinforcement learning question, considerably more difficult than existing bandit learning algorithms. Second, the pricing function [Formula: see text] is of infinite dimension, and approaching it is much more challenging than approaching a finite number of parameters as seen in existing researches. The demand-price relationship is estimated based on upper confidence bound, but the confidence interval cannot be explicitly calculated due to the complexity of the DP recursion. Finally, because of the multiperiod nature of [Formula: see text] policies the actual distribution of the randomness in demand plays an important role in determining the optimal pricing strategy [Formula: see text], which is unknown to the learner a priori. In this paper, the demand randomness is approximated by an empirical distribution constructed using dependent samples, and a novel Wasserstein metric-based argument is employed to prove convergence of the empirical distribution. This paper was accepted by J. George Shanthikumar, big data analytics.
more »
« less
Learning in Structured MDPs with Convex Cost Functions: Improved Regret Bounds for Inventory Management
We consider a stochastic inventory control problem under censored demand, lost sales, and positive lead times. This is a fundamental problem in inventory management, with significant literature establishing near optimality of a simple class of policies called “base-stock policies” as well as the convexity of long-run average cost under those policies. We consider a relatively less studied problem of designing a learning algorithm for this problem when the underlying demand distribution is unknown. The goal is to bound the regret of the algorithm when compared with the best base-stock policy. Our main contribution is a learning algorithm with a regret bound of [Formula: see text] for the inventory control problem. Here, [Formula: see text] is the fixed and known lead time, and D is an unknown parameter of the demand distribution described roughly as the expected number of time steps needed to generate enough demand to deplete one unit of inventory. Notably, our regret bounds depend linearly on L, which significantly improves the previously best-known regret bounds for this problem where the dependence on L was exponential. Our techniques utilize the convexity of the long-run average cost and a newly derived bound on the “bias” of base-stock policies to establish an almost black box connection between the problem of learning in Markov decision processes (MDPs) with these properties and the stochastic convex bandit problem. The techniques presented here may be of independent interest for other settings that involve large structured MDPs but with convex asymptotic average cost functions.
more »
« less
- Award ID(s):
- 1846792
- PAR ID:
- 10374181
- Date Published:
- Journal Name:
- Operations Research
- Volume:
- 70
- Issue:
- 3
- ISSN:
- 0030-364X
- Page Range / eLocation ID:
- 1646 to 1664
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The data-driven newsvendor problem with features has recently emerged as a significant area of research, driven by the proliferation of data across various sectors such as retail, supply chains, e-commerce, and healthcare. Given the sensitive nature of customer or organizational data often used in feature-based analysis, it is crucial to ensure individual privacy to uphold trust and confidence. Despite its importance, privacy preservation in the context of inventory planning remains unexplored. A key challenge is the nonsmoothness of the newsvendor loss function, which sets it apart from existing work on privacy-preserving algorithms in other settings. This paper introduces a novel approach to estimating a privacy-preserving optimal inventory policy within the f-differential privacy framework, an extension of the classical [Formula: see text]-differential privacy with several appealing properties. We develop a clipped noisy gradient descent algorithm based on convolution smoothing for optimal inventory estimation to simultaneously address three main challenges: (i) unknown demand distribution and nonsmooth loss function, (ii) provable privacy guarantees for individual-level data, and (iii) desirable statistical precision. We derive finite-sample high-probability bounds for optimal policy parameter estimation and regret analysis. By leveraging the structure of the newsvendor problem, we attain a faster excess population risk bound compared with that obtained from an indiscriminate application of existing results for general nonsmooth convex loss. Our bound aligns with that for strongly convex and smooth loss function. Our numerical experiments demonstrate that the proposed new method can achieve desirable privacy protection with a marginal increase in cost. This paper was accepted by J. George Shanthikumar, data science. Funding: This work was supported by the National Science Foundation [Grants DMS-2113409 and DMS 2401268 to W.-X. Zhou, and FRGMS-1952373 to L. Wang]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01268 .more » « less
-
We present an algorithm based on posterior sampling (aka Thompson sampling) that achieves near-optimal worst-case regret bounds when the underlying Markov decision process (MDP) is communicating with a finite, although unknown, diameter. Our main result is a high probability regret upper bound of [Formula: see text] for any communicating MDP with S states, A actions, and diameter D. Here, regret compares the total reward achieved by the algorithm to the total expected reward of an optimal infinite-horizon undiscounted average reward policy in time horizon T. This result closely matches the known lower bound of [Formula: see text]. Our techniques involve proving some novel results about the anti-concentration of Dirichlet distribution, which may be of independent interest.more » « less
-
null (Ed.)We study the dynamic assortment planning problem, where for each arriving customer, the seller offers an assortment of substitutable products and the customer makes the purchase among offered products according to an uncapacitated multinomial logit (MNL) model. Because all the utility parameters of the MNL model are unknown, the seller needs to simultaneously learn customers’ choice behavior and make dynamic decisions on assortments based on the current knowledge. The goal of the seller is to maximize the expected revenue, or, equivalently, to minimize the expected regret. Although dynamic assortment planning problem has received an increasing attention in revenue management, most existing policies require the estimation of mean utility for each product and the final regret usually involves the number of products [Formula: see text]. The optimal regret of the dynamic assortment planning problem under the most basic and popular choice model—the MNL model—is still open. By carefully analyzing a revenue potential function, we develop a trisection-based policy combined with adaptive confidence bound construction, which achieves an item-independent regret bound of [Formula: see text], where [Formula: see text] is the length of selling horizon. We further establish the matching lower bound result to show the optimality of our policy. There are two major advantages of the proposed policy. First, the regret of all our policies has no dependence on [Formula: see text]. Second, our policies are almost assumption-free: there is no assumption on mean utility nor any “separability” condition on the expected revenues for different assortments. We also extend our trisection search algorithm to capacitated MNL models and obtain the optimal regret [Formula: see text] (up to logrithmic factors) without any assumption on the mean utility parameters of items.more » « less
-
In recent decades, the advance of information technology and abundant personal data facilitate the application of algorithmic personalized pricing. However, this leads to the growing concern of potential violation of privacy because of adversarial attack. To address the privacy issue, this paper studies a dynamic personalized pricing problem with unknown nonparametric demand models under data privacy protection. Two concepts of data privacy, which have been widely applied in practices, are introduced: central differential privacy (CDP) and local differential privacy (LDP), which is proved to be stronger than CDP in many cases. We develop two algorithms that make pricing decisions and learn the unknown demand on the fly while satisfying the CDP and LDP guarantee, respectively. In particular, for the algorithm with CDP guarantee, the regret is proved to be at most [Formula: see text]. Here, the parameter T denotes the length of the time horizon, d is the dimension of the personalized information vector, and the key parameter [Formula: see text] measures the strength of privacy (smaller ε indicates a stronger privacy protection). Conversely, for the algorithm with LDP guarantee, its regret is proved to be at most [Formula: see text], which is near optimal as we prove a lower bound of [Formula: see text] for any algorithm with LDP guarantee.more » « less