skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development and Calibration of Pressure-Temperature-Humidity (PTH) Probes for Distributed Atmospheric Monitoring Using Unmanned Aircraft Systems
Small unmanned aircraft systems (UAS) are increasingly being used for meteorology and atmospheric monitoring. The ease of deployment makes distributed sensing of parameters such as barometric pressure, temperature, and relative humidity in the lower atmospheric boundary layer feasible. However, constraints on payload size and weight, and to a lesser extent power, limit the types of sensors that can be deployed. The objective of this work was to develop a miniature pressure-temperature-humidity (PTH) probe for UAS integration. A set of eight PTH probes were fabricated and calibrated/validated using an environmental chamber. An automated routine was developed to facilitate calibration and validation from a large set of temperature and relative humidity setpoints. Linear regression was used to apply temperature and relative humidity calibrations. Barometric pressure was calibrated using a 1-point method consisting of an offset. The resulting PTH probes were less than 4 g in mass and consumed less than 1 mA when operated from a 5 VDC source. Measurements were transmitted as a formatted string in ASCII format at 1 Hz over a 3.3 V TTL UART. Prior to calibration, measurements between individual PTH probes were significantly different. After calibration, no significant differences in temperature measurements across all PTH probes were observed, and the level of significance between PTH probes was reduced. Actual differences between calibrated PTH probes were likely to be negligible for most UAS-based applications, regardless of significance. RMSE across all calibrated PTH probes for the pressure, temperature, and relative humidity was less than 31 Pa, 0.13 °C, and 0.8% RH, respectively. The resulting calibrated PTH probes will improve the ability to quantify small variations in ambient conditions during coordinated multi-UAS flights.  more » « less
Award ID(s):
1932105
PAR ID:
10374215
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Sensors
Volume:
22
Issue:
9
ISSN:
1424-8220
Page Range / eLocation ID:
3261
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In June 2020, a series of Unmanned Aerial System (UAS) flights were conducted as part of the Wisconsin’s Dynamic Influence of Shoreline Circulations on Ozone (WiscoDisco20) campaign over the Chiwaukee Prairie State Natural Area in Southeastern Wisconsin. Temperature and humidity measurements were taken using an iMet-XQ2 atmospheric sensor and ozone measurements were taken by a 2B Tech POM sensor. Both sensors were mounted on a DJI M600 Hexacopter and two flights were conducted a day, one in the morning around 8 am (CDT), and one in the afternoon around 2 pm (CDT). Each flight was broken up into three subsections to land and switch batteries, and hover altitudes were 10 meters above ground level (m AGL), 15, 30, 45, 60, 75, 90, 105, and 120 m AGL. Observations aloft were compared with observations from a regulatory ground station to verify the reliability of the UAS measurements. Using the field data compiled from June 15-19, 2020, the existence of atmospheric inversions that were introduced by east to southeast winds illustrated a clear lake breeze effect. Atmospheric inversions are sections of the atmosphere where the temperature, humidity, and pollutant composition can have sudden dramatic shifts. These inversions occurred at different heights each day, but the inversion layer’s beginning ranged from 40 m to 100 m. The inversions demonstrated a large change in both humidity and temperature, often sharply changing up to 5 °C and by up to 35% relative humidity. With this change also comes a significant increase in ozone concentration in the inversion layer compared to its surroundings, with ozone peaking in concentration at the beginning of the inversion layer. Ozone in the inversion layer was regularly found to be in excess regulatory safety standards of throughout the week. 
    more » « less
  2. Abstract. Ozone is a pollutant formed in the atmosphere by photochemical processes involving nitrogen oxides (NOx) and volatile organic compounds (VOCs) when exposed to sunlight. Tropospheric boundary layer ozone is regularly measured at ground stations and sampled infrequently through balloon, lidar, and crewed aircraft platforms, which have demonstrated characteristic patterns with altitude. Here, to better resolve vertical profiles of ozone within the atmospheric boundary layer, we developed and evaluated an uncrewed aircraft system (UAS) platform for measuring ozone and meteorological parameters of temperature, pressure, and humidity. To evaluate this approach, a UAS was flown with a portable ozone monitor and a meteorological temperature and humidity sensor to compare to tall tower measurements in northern Wisconsin. In June 2020, as a part of the WiscoDISCO20 campaign, a DJI M600 hexacopter UAS was flown with the same sensors to measure Lake Michigan shoreline ozone concentrations. This latter UAS experiment revealed a low-altitude structure in ozone concentrations in a shoreline environment showing the highest ozone at altitudes from 20–100 m a.g.l. These first such measurements of low-altitude ozone via a UAS in the Great Lakes region revealed a very shallow layer of ozone-rich air lying above the surface. 
    more » « less
  3. The air quality at the Lake Michigan shoreline in southeastern Wisconsin is heavily influenced by the combination of Chicago area urban emissions and the meteorology over the lake. In June 2020, a multi-rotor DJI M600 Pro unmanned aerial system (UAS) equipped with a small ozone monitor (2B POM) and a meteorological sensor (iMET-XF) was flown on forecasted ozone exceedance days in the morning and evening to measure ozone, temperature, pressure and humidity profiles from 5-120 m AGL at the Chiwaukee Prairie State Natural Area in Southeastern Wisconsin. The Wisconsin DNR lakeshore air quality monitor at Chiwaukee Prairie in Kenosha, WI (AIRS ID 55-059-0019) sits 0.16 km from the shoreline and at the Wisconsin-Illinois boarder, near to where the UAS flights took place. The Chiwaukee Priaire monitoring station was equipped for an enhanced monitoring season, with a LIDAR Wind Profiler instrument. The combination of UAS measurements with the LIDAR meteorological measurements provide an understanding of the vertical structure in the meteorology of lake breeze and ozone during exceedance days. Temperature measurements aloft from the UAS show an atmospheric inversion at this site all sampling days (June 8, 9, 15-19). The ozone measurements trend with the temperature data, typically with higher ozone aloft than at the surface with a regular feature at 50-80 m AGL. We will discuss the results from the UAS with the LIDAR measurements to help understand the lake breeze influence on the local ozone measurements. 
    more » « less
  4. The lake breeze effect along the shoreline of lake Michigan has been attributed to causing high tropospheric ozone concentrations at shoreline locations. The 2021 Wisconsin’s Dynamic Influence of Shoreline Circulation on Ozone (WiscoDISCO-21) campaign involved atmospheric measurements over Chiwaukee Prairie State Natural Area in Southeastern Wisconsin from May 21-26, 2021. Three different platforms were used to collect data on this campaign in addition to the regulatory monitor at this site. Two uncrewed aerial systems (UAS), an M210 multirotor copter and the University of Colorado RAAVEN fixed-wing were flown. The RAAVEN flew between 0 and 500 meters above ground level (m AGL) and measured many atmospheric conditions, the most pertinent being temperature, humidity, and winds. The M210 flew between 0 and 120 m AGL and was equipped with a 2B Technologies Personalized Ozone Monitor (POM) which captured ozone concentrations and an Interment Systems iMET-XQ2 meteorology sensor which captured relative humidity, temperature, and pressure. A Lidar Wind Profiler measured backscatter intensities, wind speeds and direction up to 2000 m AGL. Using data from the RAAVEN, the Wisconsin DNR, and the iMET-XQ2, at least one lake breeze was detected every day of the campaign. The largest lake breezes were detected on May 22, 2021, from 17:00-21:38 UTC and on May 24, 2021, from 14:24-22:51 UTC. The presence of the lake breezes correlated with detected temperature inversions measured from the RAAVEN and high ozone events measured from the M210. Lake breezes were investigated with their relationship to vertical profiles measured on the UAS, ozone concentrations, and marine boundary layer height observed with Doppler Lidar and modeled by the High-Resolution Rapid Refresh (HRRR) meteorological model. 
    more » « less
  5. Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and wind direction. Most sUAS measurements show broad agreement with the reference, particularly temperature and wind speed, with mean value differences of 1.6 ± 2.6 ∘ C and 0.22 ± 0.59 m/s for all sUAS, respectively. sUAS platform and sensor configurations were found to contribute significantly to measurement accuracy. Sensor configurations, which included proper aspiration and radiation shielding of sensors, were found to provide the most accurate thermodynamic measurements (temperature and relative humidity), whereas sonic anemometers on multirotor platforms provided the most accurate wind measurements (horizontal speed and direction). We contribute both a characterization and assessment of sUAS for measuring atmospheric parameters, and identify important challenges and opportunities for improving scientific measurements with sUAS. 
    more » « less