skip to main content


Title: Comparison of Airborne Reactive Nitrogen Measurements During WINTER
Abstract

We present a comparison of instruments measuring nitrogen oxide species from an aircraft during the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the northeast United States. Instrument techniques compared here include chemiluminescence (CL), thermal dissociation laser‐induced fluorescence (TD‐LIF), cavity ring‐down spectroscopy (CRDS), high‐resolution time of flight, iodide‐adduct chemical ionization mass spectrometry (ICIMS), and aerosol mass spectrometry. Species investigated include NO2, NO, total nitrogen oxides (NOy), N2O5, ClNO2, and HNO3. Particulate‐phase nitrate is also included for comparisons of HNO3and NOy. Instruments generally agreed within reported uncertainties, with individual flights sometimes showing much better agreement than the data set taken as a whole, due to flight‐to‐flight slope changes. NO measured by CRDS and CL showed an average relative slope of 1.16 ± 0.01 across all flights, which is outside of combined uncertainties. The source of the error was not identified. For NO2measured by CRDS and TD‐LIF the average was 1.02 ± 0.00; for NOymeasured by CRDS and CL the average was 1.01 ± 0.00; and for N2O5measured by CRDS and ICIMS the average was 0.89 ± 0.01. NOybudget closure to within 20% is demonstrated. We observe nonlinearity in NO2and NOycorrelations at concentrations above ~30 ppbv that may be related to the NO discrepancy noted above. For ClNO2there were significant differences between ICIMS and TD‐LIF, potentially due in part to the temperature used for thermal dissociation. Although the fraction of particulate nitrate measured by the TD‐LIF is not well characterized, it improves comparisons to include particulate measurements.

 
more » « less
Award ID(s):
1822664
NSF-PAR ID:
10375356
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
124
Issue:
19
ISSN:
2169-897X
Page Range / eLocation ID:
p. 10483-10502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We examined the reactive uptake of dinitrogen pentoxide (N 2 O 5 ) to authentic biomass-burning aerosol (BBA) using a small chamber reservoir in combination with an entrained aerosol flow tube. BBA was generated from four different fuel types and the reactivity of N 2 O 5 was probed from 30 to 70% relative humidity (RH). The N 2 O 5 reactive uptake coefficient, γ (N 2 O 5 ), depended upon RH, fuel type, and to a lesser degree on aerosol chloride mass fractions. The γ (N 2 O 5 ) ranged from 2.0 (±0.4) ×10 −3 on black needlerush derived BBA at 30% RH to 6.0 (±0.6) ×10 −3 on wiregrass derived BBA at 65% RH. Major N 2 O 5 reaction products were observed including gaseous ClNO 2 and HNO 3 and particulate nitrate, and used to create a reactive nitrogen budget. Black needlerush BBA had the most particulate chloride, and the only measured ClNO 2 yield > 1%. The ClNO 2 yield on black needlerush decayed from an initial value of ∼100% to ∼30% over the course of the burn experiment, suggesting a depletion of BBA chloride over time. Black needlerush was also the only fuel for which the reactive nitrogen budget indicated other N-containing products were generated. Generally, the results suggest limited chloride availability for heterogeneous reaction for BBA in the RH range probed here, including BBA with chloride mass fractions on the higher end of previously reported values (∼17–34%). Though less than fresh sea spray aerosol, ∼50%. We use these measured quantities to discuss the implications for nocturnal aerosol nitrate formation, the chemical fate of N 2 O 5 (g), and the availability of particulate chloride for activation in biomass burning plumes. 
    more » « less
  2. Abstract. The formation of secondary organic aerosol (SOA) from the oxidation of β-pinene via nitrate radicals is investigated in the Georgia Tech Environmental Chamber (GTEC) facility. Aerosol yields are determined for experiments performed under both dry (relative humidity (RH) < 2 %) and humid (RH = 50 % and RH = 70 %) conditions. To probe the effects of peroxy radical (RO2) fate on aerosol formation, "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are performed. Gas-phase organic nitrate species (with molecular weights of 215, 229, 231, and 245 amu, which likely correspond to molecular formulas of C10H17NO4, C10H15NO5, C10H17NO5, and C10H15NO6, respectively) are detected by chemical ionization mass spectrometry (CIMS) and their formation mechanisms are proposed. The NO+ (at m/z 30) and NO2+ (at m/z 46) ions contribute about 11 % to the combined organics and nitrate signals in the typical aerosol mass spectrum, with the NO+ : NO2+ ratio ranging from 4.8 to 10.2 in all experiments conducted. The SOA yields in the "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are comparable. For a wide range of organic mass loadings (5.1–216.1 μg m&minus;3), the aerosol mass yield is calculated to be 27.0–104.1 %. Although humidity does not appear to affect SOA yields, there is evidence of particle-phase hydrolysis of organic nitrates, which are estimated to compose 45–74 % of the organic aerosol. The extent of organic nitrate hydrolysis is significantly lower than that observed in previous studies on photooxidation of volatile organic compounds in the presence of NOx. It is estimated that about 90 and 10 % of the organic nitrates formed from the β-pinene+NO3 reaction are primary organic nitrates and tertiary organic nitrates, respectively. While the primary organic nitrates do not appear to hydrolyze, the tertiary organic nitrates undergo hydrolysis with a lifetime of 3–4.5 h. Results from this laboratory chamber study provide the fundamental data to evaluate the contributions of monoterpene + NO3 reaction to ambient organic aerosol measured in the southeastern United States, including the Southern Oxidant and Aerosol Study (SOAS) and the Southeastern Center for Air Pollution and Epidemiology (SCAPE) study.

     
    more » « less
  3. Abstract. Chemical ionization massspectrometry (CIMS) instruments routinely detect hundreds of oxidized organic compoundsin the atmosphere. A major limitation of these instruments is the uncertaintyin their sensitivity to many of the detected ions. We describe thedevelopment of a new high-resolution time-of-flight chemical ionization massspectrometer that operates in one of two ionization modes: using eitherammonium ion ligand-switching reactions such as for NH4+ CIMS orproton transfer reactions such as for proton-transfer-reaction massspectrometer (PTR-MS). Switching between the modes can be done within 2&thinsp;min.The NH4+ CIMS mode of the new instrument has sensitivities of upto 67&thinsp;000&thinsp;dcps&thinsp;ppbv−1 (duty-cycle-corrected ion counts per second perpart per billion by volume) and detection limits between 1 and 60&thinsp;pptv at2σ for a 1&thinsp;s integration time for numerous oxygenated volatileorganic compounds. We present a mass spectrometric voltage scanning procedurebased on collision-induced dissociation that allows us to determine thestability of ammonium-organic ions detected by the NH4+ CIMS instrument.Using this procedure, we can effectively constrain the sensitivity of theammonia chemical ionization mass spectrometer to a wide range of detectedoxidized volatile organic compounds for which no calibration standards exist.We demonstrate the application of this procedure by quantifying thecomposition of secondary organic aerosols in a series of laboratoryexperiments.

     
    more » « less
  4. Abstract

    The Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE‐CAN) deployed the NSF/NCAR C‐130 aircraft in summer 2018 across the western U.S. to sample wildfire smoke during its first days of atmospheric evolution. We present a summary of a subset of reactive oxidized nitrogen species (NOy) in plumes sampled in a pseudo‐Lagrangian fashion. Emissions of nitrogen oxides (NOx = NO + NO2) and nitrous acid (HONO) are rapidly converted to more oxidized forms. Within 4 h, ∼86% of the ΣNOyis in the form of peroxy acyl nitrates (PANs) (∼37%), particulate nitrate (pNO3) (∼27%), and gas‐phase organic nitrates (Org N(g)) (∼23%). The averagee‐folding time and distance for NOxare ∼90 min and ∼40 km, respectively. Nearly no enhancements in nitric acid (HNO3) were observed in plumes sampled in a pseudo‐Lagrangian fashion, implying HNO3‐limited ammonium nitrate (NH4NO3) formation, with one notable exception that we highlight as a case study. We also summarize the observed partitioning of NOyin all the smoke samples intercepted during WE‐CAN. In smoke samples intercepted above 3 km above sea level (ASL), the contributions of PANs andpNO3to ΣNOyincrease with altitude. WE‐CAN also sampled smoke from multiple fires mixed with anthropogenic emissions over the California Central Valley. We distinguish samples where anthropogenic NOxemissions appear to lead to an increase in NOxabundances by a factor of four and contribute to additional PAN formation.

     
    more » « less
  5. Abstract. We present a novel photolytic source of gas-phase NO3 suitable for use in atmospheric chemistry studies that has several advantages over traditional sources that utilize NO2 + O3 reactions and/or thermal dissociation of dinitrogen pentoxide (N2O5). The method generates NO3 via irradiation of aerated aqueous solutions of ceric ammonium nitrate (CAN, (NH4)2Ce(NO3)6) and nitric acid (HNO3) or sodium nitrate (NaNO3). We present experimental and model characterization of the NO3 formation potential of irradiated CAN / HNO3 and CAN / NaNO3 mixtures containing [CAN] = 10−3 to 1.0 M, [HNO3] = 1.0 to 6.0 M, [NaNO3] = 1.0 to 4.8 M, photon fluxes (I) ranging from 6.9 × 1014 to 1.0 × 1016 photons cm−2 s−1, and irradiation wavelengths ranging from 254 to 421 nm. NO3 mixing ratios ranging from parts per billion to parts per million by volume were achieved using this method. At the CAN solubility limit, maximum [NO3] was achieved using [HNO3] ≈ 3.0 to 6.0 M and UVA radiation (λmax⁡ = 369 nm) in CAN / HNO3 mixtures or [NaNO3] ≥ 1.0 M and UVC radiation (λmax⁡ = 254 nm) in CAN / NaNO3 mixtures. Other reactive nitrogen (NO2, N2O4, N2O5, N2O6, HNO2, HNO3, HNO4) and reactive oxygen (HO2, H2O2) species obtained from the irradiation of ceric nitrate mixtures were measured using a NOx analyzer and an iodide-adduct high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS). To assess the applicability of the method for studies of NO3-initiated oxidative aging processes, we generated and measured the chemical composition of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol (SOA) from the β-pinene + NO3 reaction using a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to the HR-ToF-CIMS.

     
    more » « less