ABSTRACT One of the key processes driving galaxy evolution during the Cosmic Dawn is supernova feedback. This likely helps regulate star formation inside of galaxies, but it can also drive winds that influence the large-scale intergalactic medium. Here, we present a simple semi-analytic model of supernova-driven galactic winds and explore the contributions of different phases of galaxy evolution to cosmic metal enrichment in the high-redshift (z ≳ 6) Universe. We show that models calibrated to the observed galaxy luminosity function at z ∼ 6–8 have filling factors $$\sim 1{{\%}}$$ at z ∼ 6 and $$\sim 0.1{{\%}}$$ at z ∼ 12, with different star formation prescriptions providing about an order of magnitude uncertainty. Despite the small fraction of space filled by winds, these scenarios predict an upper limit to the abundance of metal-line absorbers in quasar spectra at $$z \gtrsim 5$$ which is comfortably above that currently observed. We also consider enrichment through winds driven by Pop III star formation in minihalos. We find that these can dominate the total filling factor at $$z \gtrsim 10$$ and even compete with winds from normal galaxies at z ∼ 6, at least in terms of the total enriched volume. But these regions have much lower overall metallicities, because each one is generated by a small burst of star formation. Finally, we show that Compton cooling of these supernova-driven winds at $$z \gtrsim 6$$ has only a small effect on the cosmic microwave background. 
                        more » 
                        « less   
                    
                            
                            Non-universal stellar initial mass functions: large uncertainties in star formation rates at z ≈ 2–4 and other astrophysical probes
                        
                    
    
            ABSTRACT We explore the assumption, widely used in many astrophysical calculations, that the stellar initial mass function (IMF) is universal across all galaxies. By considering both a canonical broken-power-law IMF and a non-universal IMF, we are able to compare the effect of different IMFs on multiple observables and derived quantities in astrophysics. Specifically, we consider a non-universal IMF that varies as a function of the local star formation rate, and explore the effects on the star formation rate density (SFRD), the extragalactic background light, the supernova (both core-collapse and thermonuclear) rates, and the diffuse supernova neutrino background. Our most interesting result is that our adopted varying IMF leads to much greater uncertainty on the SFRD at $$z \approx 2-4$$ than is usually assumed. Indeed, we find an SFRD (inferred using observed galaxy luminosity distributions) that is a factor of $$\gtrsim 3$$ lower than canonical results obtained using a universal IMF. Secondly, the non-universal IMF we explore implies a reduction in the supernova core-collapse rate of a factor of $$\sim 2$$, compared against a universal IMF. The other potential tracers are only slightly affected by changes to the properties of the IMF. We find that currently available data do not provide a clear preference for universal or non-universal IMF. However, improvements to measurements of the star formation rate and core-collapse supernova rate at redshifts $$z \gtrsim 2$$ may offer the best prospects for discernment. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10375837
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 517
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 2471-2484
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present a new self-consistent semianalytic model of the first stars and galaxies to explore the high-redshift (z≥ 15) Population III (PopIII) and metal-enriched star formation histories. Our model includes the detailed merger history of dark matter halos generated with Monte Carlo merger trees. We calibrate the minimum halo mass for PopIII star formation from recent hydrodynamical cosmological simulations that simultaneously include the baryon–dark matter streaming velocity, Lyman–Werner (LW) feedback, and molecular hydrogen self-shielding. We find an overall increase in the resulting star formation rate density (SFRD) compared to calibrations based on previous simulations (e.g., the PopIII SFRD is over an order of magnitude higher atz= 35−15). We evaluate the effect of the halo-to-halo scatter in this critical mass and find that it increases the PopIII stellar mass density by a factor ∼1.5 atz≥ 15. Additionally, we assess the impact of various semianalytic/analytic prescriptions for halo assembly and star formation previously adopted in the literature. For example, we find that models assuming smooth halo growth computed via abundance matching predict SFRDs similar to the merger tree model for our fiducial model parameters, but that they may underestimate the PopIII SFRD in cases of strong LW feedback. Finally, we simulate subvolumes of the Universe with our model both to quantify the reduction in total star formation in numerical simulations due to a lack of density fluctuations on spatial scales larger than the simulation box, and to determine spatial fluctuations in SFRD due to the diversity in halo abundances and merger histories.more » « less
- 
            null (Ed.)ABSTRACT We study the production of barium (Ba) and strontium (Sr) in ultrafaint dwarf (UFDs) galaxies. Both r- and s- processes produce these elements, and one can infer the contribution of the r-process from the characteristic r-process abundance pattern, whereas the s-process contribution remains largely unknown. We show that the current s-process yield from asymptotic giant branch (AGB) stars is not sufficient to explain the Ba and Sr abundances observed in UFDs. Production of these elements would need to be efficient from the beginning of star formation in the galaxies. The discrepancy of nearly or more than 1 dex is not reconciled even if we consider s-process in super-AGB stars. We consider a possible resolution by assuming rotating massive stars (RMSs) and electron-capture supernovae (ECSNe) as additional contributors. We find that the RMSs could be the origin of Ba in UFDs if ∼10 per cent of massive stars are rotating at 300 km s−1. As for ECSNe, we argue that their fraction is less than 2 per cent of core-collapse supernova. It narrows the progenitor mass-range to $${\lesssim}0.1\, \mathrm{M}_\odot$$ at −3 ≲ [Fe/H] ≲ −2. We also explore another resolution by modifying the stellar initial mass function (IMF) in UFDs and find a top-light IMF model that reproduces the observed level of Ba-enrichment. Future observations that determine or tightly constrain the europium and nitrogen abundances are crucial to identify the origin of Ba and Sr in UFDs.more » « less
- 
            We review the computation of and associated uncertainties in the current understanding of the relic neutrino background due to core-collapse supernovae, black hole formation and neutron star merger events. We consider the current status of uncertainties due to the nuclear equation of state (EoS), the progenitor masses, the source supernova neutrino spectrum, the cosmological star formation rate, the stellar initial mass function, neutrino oscillations, and neutrino self-interactions. We summarize the current viability of future neutrino detectors to distinguish the nuclear EoS and the temperature of supernova neutrinos via the detected relic supernova neutrino spectrum.more » « less
- 
            Abstract We present the results of a search for core-collapse supernova neutrinos, using long-term KamLAND data from 2002 March 9 to 2020 April 25. We focus on the electron antineutrinos emitted from supernovae in the energy range of 1.8–111 MeV. Supernovae will make a neutrino event cluster with the duration of ∼10 s in the KamLAND data. We find no neutrino clusters and give the upper limit on the supernova rate to be 0.15 yr−1with a 90% confidence level. The detectable range, which corresponds to a >95% detection probability, is 40–59 kpc and 65–81 kpc for core-collapse supernovae and failed core-collapse supernovae, respectively. This paper proposes to convert the supernova rate obtained by the neutrino observation to the Galactic star formation rate. Assuming a modified Salpeter-type initial mass function, the upper limit on the Galactic star formation rate is <(17.5–22.7)M⊙yr−1with a 90% confidence level.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
