We present a new method for analysing stochastic epidemic models under minimal assumptions. The method, dubbed dynamic survival analysis (DSA), is based on a simple yet powerful observation, namely that population-level mean-field trajectories described by a system of partial differential equations may also approximate individual-level times of infection and recovery. This idea gives rise to a certain non-Markovian agent-based model and provides an agent-level likelihood function for a random sample of infection and/or recovery times. Extensive numerical analyses on both synthetic and real epidemic data from foot-and-mouth disease in the UK (2001) and COVID-19 in India (2020) show good accuracy and confirm the method’s versatility in likelihood-based parameter estimation. The accompanying software package gives prospective users a practical tool for modelling, analysing and interpreting epidemic data with the help of the DSA approach.
more »
« less
Data-driven scalable pipeline using national agent-based models for real-time pandemic response and decision support
This paper describes an integrated, data-driven operational pipeline based on national agent-based models to support federal and state-level pandemic planning and response. The pipeline consists of ( i) an automatic semantic-aware scheduling method that coordinates jobs across two separate high performance computing systems; ( ii) a data pipeline to collect, integrate and organize national and county-level disaggregated data for initialization and post-simulation analysis; ( iii) a digital twin of national social contact networks made up of 288 Million individuals and 12.6 Billion time-varying interactions covering the US states and DC; ( iv) an extension of a parallel agent-based simulation model to study epidemic dynamics and associated interventions. This pipeline can run 400 replicates of national runs in less than 33 h, and reduces the need for human intervention, resulting in faster turnaround times and higher reliability and accuracy of the results. Scientifically, the work has led to significant advances in real-time epidemic sciences.
more »
« less
- PAR ID:
- 10376364
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- The International Journal of High Performance Computing Applications
- Volume:
- 37
- Issue:
- 1
- ISSN:
- 1094-3420
- Format(s):
- Medium: X Size: p. 4-27
- Size(s):
- p. 4-27
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In large agent-based models, it is difficult to identify the correlate system-level dynamics with individuallevel attributes. In this paper, we use inverse reinforcement learning to estimate compact representations of behaviors in large-scale pandemic simulations in the form of reward functions. We illustrate the capacity and performance of these representations identifying agent-level attributes that correlate with the emerging dynamics of large-scale multi-agent systems. Our experiments use BESSIE, an ABM for COVID-like epidemic processes, where agents make sequential decisions (e.g., use PPE/refrain from activities) based on observations (e.g., number of mask wearing people) collected when visiting locations to conduct their activities. The IRL-based reformulations of simulation outputs perform significantly better in classification of agent-level attributes than direct classification of decision trajectories and are thus more capable of determining agent-level attributes with definitive role in the collective behavior of the system. We anticipate that this IRL-based approach is broadly applicable to general ABMs.more » « less
-
The Dynamical Survival Analysis (DSA) is a framework for modeling epidemics based on mean field dynamics applied to individual (agent) level history of infection and recovery. Recently, the Dynamical Survival Analysis (DSA) method has been shown to be an effective tool in analyzing complex non-Markovian epidemic processes that are otherwise difficult to handle using standard methods. One of the advantages of Dynamical Survival Analysis (DSA) is its representation of typical epidemic data in a simple although not explicit form that involves solutions of certain differential equations. In this work we describe how a complex non-Markovian Dynamical Survival Analysis (DSA) model may be applied to a specific data set with the help of appropriate numerical and statistical schemes. The ideas are illustrated with a data example of the COVID-19 epidemic in Ohio.more » « less
-
Abstract Stochastic epidemic models (SEMs) fit to incidence data are critical to elucidating outbreak dynamics, shaping response strategies, and preparing for future epidemics. SEMs typically represent counts of individuals in discrete infection states using Markov jump processes (MJPs), but are computationally challenging as imperfect surveillance, lack of subject‐level information, and temporal coarseness of the data obscure the true epidemic. Analytic integration over the latent epidemic process is impossible, and integration via Markov chain Monte Carlo (MCMC) is cumbersome due to the dimensionality and discreteness of the latent state space. Simulation‐based computational approaches can address the intractability of the MJP likelihood, but are numerically fragile and prohibitively expensive for complex models. A linear noise approximation (LNA) that approximates the MJP transition density with a Gaussian density has been explored for analyzing prevalence data in large‐population settings, but requires modification for analyzing incidence counts without assuming that the data are normally distributed. We demonstrate how to reparameterize SEMs to appropriately analyze incidence data, and fold the LNA into a data augmentation MCMC framework that outperforms deterministic methods, statistically, and simulation‐based methods, computationally. Our framework is computationally robust when the model dynamics are complex and applies to a broad class of SEMs. We evaluate our method in simulations that reflect Ebola, influenza, and SARS‐CoV‐2 dynamics, and apply our method to national surveillance counts from the 2013–2015 West Africa Ebola outbreak.more » « less
-
We study the role of vaccine acceptance in controlling the spread of COVID-19 in the US using AI-driven agent-based models. Our study uses a 288 million node social contact network spanning all 50 US states plus Washington DC, comprised of 3300 counties, with 12.59 billion daily interactions. The highly-resolved agent-based models use realistic information about disease progression, vaccine uptake, production schedules, acceptance trends, prevalence, and social distancing guidelines. Developing a national model at this resolution that is driven by realistic data requires a complex scalable workflow, model calibration, simulation, and analytics components. Our workflow optimizes the total execution time and helps in improving overall human productivity.This work develops a pipeline that can execute US-scale models and associated workflows that typically present significant big data challenges. Our results show that, when compared to faster and accelerating vaccinations, slower vaccination rates due to vaccine hesitancy cause averted infections to drop from 6.7M to 4.5M, and averted total deaths to drop from 39.4K to 28.2K nationwide. This occurs despite the fact that the final vaccine coverage is the same in both scenarios. Improving vaccine acceptance by 10% in all states increases averted infections from 4.5M to 4.7M (a 4.4% improvement) and total deaths from 28.2K to 29.9K (a 6% increase) nationwide. The analysis also reveals interesting spatio-temporal differences in COVID-19 dynamics as a result of vaccine acceptance. To our knowledge, this is the first national-scale analysis of the effect of vaccine acceptance on the spread of COVID-19, using detailed and realistic agent-based models.more » « less
An official website of the United States government
