skip to main content


Title: Direct Freeform Laser Fabrication of 3D Conformable Electronics
Abstract

3D conformable electronic devices on freeform surfaces show superior performance to the conventional, planar ones. They represent a trend of future electronics and have witnessed exponential growth in various applications. However, their potential is largely limited by a lack of sophisticated fabrication techniques. To tackle this challenge, a new direct freeform laser (DFL) fabrication method enabled by a 5‐axis laser processing platform for directly fabricating 3D conformable electronics on targeted arbitrary surfaces is reported. Accordingly, representative laser‐induced graphene (LIG), metals, and metal oxides are successfully fabricated as high‐performance sensing and electrode materials from different material precursors on various types of substrates for applications in temperature/light/gas sensing, energy storage, and printed circuit board for circuit. Last but not the least, to demonstrate an application in smart homes, LIG‐based conformable strain sensors are fabricated and distributed in designated locations of an artificial tree. The distributed sensors have the capability of monitoring the wind speed and direction with the assistance of well‐trained machine‐learning models. This novel process will pave a new and general route to fabricating 3D conformable electronic devices, thus creating new opportunities in robotics, biomedical sensing, structural health, environmental monitoring, and Internet of Things applications.

 
more » « less
Award ID(s):
2045101 1825352 1933861
NSF-PAR ID:
10377098
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
33
Issue:
1
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creating interdigitated microelectrodes on paper in a one-step process using commercially available silver nanoparticle and carbon black based conductive inks. Another area involves use of specialized filter papers as substrates, such as multi-layered fibrous membrane paper consisting of a poly(acrylonitrile) nanofibrous layer and a nonwoven poly(ethylene terephthalate) layer. The poly(acrylonitrile) nanofibrous layer are dense and smooth enough to allow for high resolution aerosol jet printing. With additively fabricated electrodes on the paper, molecularly-functionalized metal nanoparticles are deposited by molecularly-mediated assembling, drop casting, and printing (sensing and electrode materials), allowing full functionalization of the paper, and producing sensor devices with high surface area. These sensors, depending on the electrode configuration, are used for detection of chemical and biological species in vapor phase, such as water vapor and volatile organic compounds, making them applicable to human performance monitoring. These paper based sensors are shown to display an enhancement in sensitivity, as compared to control devices fabricated on non-porous polyimide substrates. These results have demonstrated the feasibility of paper-based printed devices towards manufacturing of a fully wearable, highly-sensitive, and wireless human performance monitor coupled to flexible electronics with the capability to communicate wirelessly to a smartphone or other electronics for data logging and analysis. 
    more » « less
  2. null (Ed.)
    This paper proposes a new way of designing and fabricating conformal flexible electronics on free-form surfaces, which can generate woven flexible electronics designs conforming to free-form 3D shapes with 2D printed electronic circuits. Utilizing our recently proposed foliation-based 3D weaving techniques, we can reap unprecedented advantages in conventional 2D electronic printing. The method is based on the foliation theory in differential geometry, which divides a surface into parallel leaves. Given a surface with circuit design, we first calculate a graph-value harmonic map and then create two sets of harmonic foliations perpendicular to each other. As the circuits are processed as the texture on the surface, they are separated and attached to each leaf. The warp and weft threads are then created and manually woven to reconstruct the surface and reconnect the circuits. Notably, The circuits are printed in 2D, which uniquely differentiates the proposed method from others. Compared with costly conformal 3D electronic printing methods requiring 5-axis CNC machines, our method is more reliable, more efficient, and economical. Moreover, the Harmonic foliation theory assures smoothness and orthogonality between every pair of woven yarns, which guarantees the precision of the flexible electronics woven on the surface. The proposed method provides an alternative solution to the design and physical realization of surface electronic textiles for various applications, including wearable electronics, sheet metal craft, architectural designs, and smart woven-composite parts with conformal sensors in the automotive and aerospace industry. The performance of the proposed method is depicted using two examples. 
    more » « less
  3. Measurements of the gas sensing performance of nanomaterials typically involve the use of interdigitated electrodes (IDEs). A separate heater is often integrated to provide elevated temperature for improved sensing performance. However, the use of IDEs and separate heaters increases fabrication complexity. Here, a novel gas sensing platform based on a highly porous laser-induced graphene (LIG) pattern is reported. The LIG gas sensing platform consists of a sensing region and a serpentine interconnect region. A thin film of metal ( e.g. , Ag) coated in the serpentine interconnect region significantly reduces its resistance, thereby providing a localized Joule healing in the sensing region ( i.e. , self-heating) during typical measurements of chemoresistive gas sensors. Dispersing nanomaterials with different selectivity in the sensing region results in an array to potentially deconvolute various gaseous components in the mixture. The self-heating of the LIG gas sensing platform is first studied as a function of the applied voltage during resistance measurement and LIG geometric parameters ( e.g. , linewidth from 120 to 240 μm) to achieve an operating temperature from 20 to 80 °C. Systematic investigations of various nanomaterials demonstrate the feasibility of the LIG gas sensing performance. Taken together with the stretchable design layout in the serpentine interconnect region to provide mechanical robustness over a tensile strain of 20%, the gas sensor with a significant response (6.6‰ ppm −1 ), fast response/recovery processes, excellent selectivity, and an ultralow limit of detection (1.5 parts per billion) at a modest temperature from self-heating opens new opportunities in epidermal electronic devices. 
    more » « less
  4. Abstract

    Ongoing efforts in triboelectric nanogenerators (TENGs) focus on enhancing power generation, but obstacles concerning the economical and cost‐effective production of TENGs continue to prevail. Micro‐/nanostructure engineering of polymer surfaces has been dominantly utilized for boosting the contact triboelectrification, with deposited metal electrodes for collecting the scavenged energy. Nevertheless, this state‐of‐the‐art approach is limited by the vague potential for producing 3D hierarchical surface structures with conformable coverage of high‐quality metal. Laser‐shock imprinting (LSI) is emerging as a potentially scalable approach for directly surface patterning of a wide range of metals with 3D nanoscale structures by design, benefiting from the ultrahigh‐strain‐rate forming process. Here, a TENG device is demonstrated with LSI‐processed biomimetic hierarchically structured metal electrodes for efficient harvesting of water‐drop energy in the environment. Mimicking and transferring hierarchical microstructures from natural templates, such as leaves, into these water‐TENG devices is effective regarding repelling water drops from the device surface, since surface hydrophobicity from these biomicrostructures maximizes the TENG output. Among various leaves' microstructures, hierarchical microstructures from dried bamboo leaves are preferable regarding maximizing power output, which is attributed to their unique structures, containing both dense nanostructures and microscale features, compared with other types of leaves. Also, the triboelectric output is significantly improved by closely mimicking the hydrophobic nature of the leaves in the LSI‐processed metal surface after functionalizing it with low‐surface‐energy self‐assembled‐monolayers. The approach opens doors to new manufacturable TENG technologies for economically feasible and ecologically friendly production of functional devices with directly patterned 3D biomimic metallic surfaces in energy, electronics, and sensor applications.

     
    more » « less
  5. The advent of wearable or body-borne electronics is rapidly changing how the Department of Defense (DoD) provides diagnostic and therapeutic medical care to the warfighter. Multiple DoD entities, from the U.S. Army Combat Capabilities Development Command’s Chemical Biological Center, to the Defense Threat Reduction Agency, are seeking bioelectronics that can transform military medicine by providing medics with valuable information to improve acute care on the battlefield, and aiding military doctors providing prolonged care. For instance, bioelectronics sensors that measure multiple signals, including heartbeat and the secretion of metabolites in perspiration, can provide remote monitoring of warfighter medical status during operations. Next-generation bioelectronics can be delivered by implantation or can be swallowed so as to deliver therapeutic medications. A seamless integration of such bioelectronics with the soft, complex, and 3D shape of the human body is inherently challenging due to the geometrical, material, and mechanical dichotomies between the two. Conventional electronics are typically fabricated via planar, top-down processes on a rigid substrate. Conversely, the human body is an irregularly shaped and highly flexible, stretchable construct. Significant research has been dedicated to overcoming this challenge, including the design of stretchable, flexible electronics, the development of electronic skin tattoos, and the manufacturing of electronic textile and bioelectronic implants. This article proposes and highlights the advancement of a multimaterial and multiscale 3D printing approach that can enable the fabrication of bioelectronics to better interface with the human body. Specifically, the article highlights the development of (a) a freeform electronics fabrication approach that allows for the creation of complex 3D systems, and (b) the multimaterial-printing of an ingestible gastric resident system that allows for non-surgical and needle-free delivery of wireless electronics into the human body. 
    more » « less