Integrated sensing and communication (ISAC) is a key enabling technique for future wireless networks owing to its efficient hardware and spectrum utilization. In this paper, we focus on dual-functional waveform design for a multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) ISAC system, which is considered to be a promising solution for practical deployment. Since the dual-functional waveform carries communication information, its random nature leads to high range-Doppler sidelobes in the ambiguity function, which in turn degrades radar sensing performance. To suppress range- Doppler sidelobes, we propose a novel symbol-level precoding (SLP)-based waveform design for MIMO-OFDM ISAC systems by fully exploiting the available temporal degrees of freedom. Our goal is to minimize the range-Doppler integrated sidelobe level (ISL) while satisfying the constraints of target illumination power, multi-user communication quality of service (QoS), and constant-modulus transmission. To solve the resulting non-convex waveform design problem, we develop an efficient algorithm using the majorization-minimization (MM) and alternative direction method of multipliers (ADMM) methods. Simulation results show that the proposed waveform has significantly reduced range-Doppler sidelobes compared with signals designed only for communications and other baselines. In addition, the proposed waveform design achieves target detection and estimation performance close to that achievable by waveforms designed only for radar, which demonstrates the superiority of the proposed SLP-based ISAC approach.
more »
« less
Joint Transmit Waveform and Receive Filter Design for Dual-Functional Radar-Communication Systems
Space-time adaptive processing (STAP) is an effective method for multi-input multi-output (MIMO) radar systems to identify moving targets in the presence of multiple interferers. The idea of joint optimization in both spatial and temporal domains for radar detection is consistent with the symbol-level precoding (SLP) technique for MIMO communication systems, that optimizes the transmit waveform according to instantaneous transmitted symbols. Therefore, in this paper we combine STAP and constructive interference (CI)-based SLP techniques to realize dual-functional radar-communication (DFRC). The radar output signal-to-interference-plus-noise ratio (SINR) is maximized by jointly optimizing the transmit waveform and receive filter, while satisfying the communication quality-of-service (QoS) constraints and the constant modulus power constraint. An efficient algorithm based on majorization-minimization (MM) and nonlinear equality constrained alternative direction method of multipliers (neADMM) methods is proposed to solve the non-convex optimization problem. Simulation results verify the effectiveness of the proposed DFRC scheme and the associate algorithm.
more »
« less
- Award ID(s):
- 2008724
- PAR ID:
- 10377368
- Date Published:
- Journal Name:
- Proc. International Conference on Communications
- Page Range / eLocation ID:
- 5116 to 5121
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we investigate the potential of employing reconfigurable intelligent surface (RIS) in integrated sensing and communication (ISAC) systems. In particular, we consider an RIS-assisted ISAC system in which a multi-antenna base station (BS) simultaneously performs multi-user multi-input single-output (MU-MISO) communication and target detection. We aim to jointly design the transmit beamforming and receive filter of the BS, and the reflection coefficients of the RIS to maximize the sum-rate of the communication users, while satisfying a worst-case radar output signal-to-noise ratio (SNR), the transmit power constraint, and the unit modulus property of the reflecting coefficients. An efficient iterative algorithm based on fractional programming (FP), majorization-minimization (MM), and alternative direction method of multipliers (ADMM) is developed to solve the complicated non-convex problem. Simulation results verify the advantage of the proposed RIS-assisted ISAC scheme and the effectiveness of the developed algorithm.more » « less
-
null (Ed.)We propose a joint channel estimation and data detection (JED) algorithm for cell-free massive multi-user (MU) multiple-input multiple-output (MIMO) systems. Our algorithm yields improved reliability and reduced latency while minimizing the pilot overhead of coherent uplink transmission. The proposed JED method builds upon a novel non-convex optimization problem that we solve approximately and efficiently using forward- backward splitting. We use simulation results to demonstrate that our algorithm achieves robust data transmission with more than 3x reduced pilot overhead compared to orthogonal training in a 128 antenna cell-free massive MU-MIMO system in which 128 users transmit data over 128 time slots.more » « less
-
Integrated sensing and communication has been identified as an enabling technology for forthcoming wireless networks. In an effort to achieve an improved performance trade-off between multiuser communications and radar sensing, this paper considers a dynamically-partitioned antenna array architecture for monostatic ISAC systems, in which each element of the array at the base station can function as either a transmit or receive antenna. To fully exploit the available spatial degrees of freedom for both communication and sensing functions, we jointly design the partitioning of the array between transmit and receive antennas together with the transmit beamforming in order to minimize the direction-of-arrival (DOA) estimation error, while satisfying constraints on the communication signal-to-interference-plusnoise ratio and the transmit power budget. An alternating algorithm based on Dinkelbach’s transform, the alternative direction method of multipliers, and majorization-minimization is developed to solve the resulting complicated optimization problem. To reduce the computational complexity, we also present a heuristic three-step strategy that optimizes the transmit beamforming after determining the antenna partitioning. Simulation results confirm the effectiveness of the proposed algorithms in significantly reducing the DOA estimation error.more » « less
-
Symbol-level precoding (SLP) based on the concept of constructive interference (CI) is shown to be superior to traditional block-level precoding (BLP), however at the cost of a symbol-by-symbol optimization during the precoding design. In this paper, we propose a CI-based block-level precoding (CI-BLP) scheme for the downlink transmission of a multi-user multiple-input single-output (MU-MISO) communication system, where we design a constant precoding matrix to a block of symbol slots to exploit CI for each symbol slot simultaneously. A single optimization problem is formulated to maximize the minimum CI effect over the entire block, thus reducing the computational cost of traditional SLP as the optimization problem only needs to be solved once per block. By leveraging the Karush-Kuhn-Tucker (KKT) conditions and the dual problem formulation, the original optimization problem is finally shown to be equivalent to a quadratic programming (QP) over a simplex. Numerical results validate our derivations and exhibit superior performance for the proposed CI-BLP scheme over traditional BLP and SLP methods, thanks to the relaxed block-level power constraint.more » « less
An official website of the United States government

