skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A modified multibond model for nanoscale static friction
Several key features of nanoscale friction phenomena observed in experiments, including the stick-slip to smooth sliding transition and the velocity and temperature dependence of friction, are often described by reduced-order models. The most notable of these are the thermal Prandtl–Tomlinson model and the multibond model. Here we present a modified multibond (mMB) model whereby a physically-based criterion—a critical bond stretch length—is used to describe interfacial bond breaking. The model explicitly incorporates damping in both the cantilever and the contacting materials. Comparison to the Fokker–Planck formalism supports the results of this new model, confirming its ability to capture the relevant physics. Furthermore, the mMB model replicates the near-logarithmic trend of increasing friction with lateral scanning speed seen in many experiments. The model can also be used to probe both correlated and uncorrelated stick slip. Through greater understanding of the effects of damping and noise in the system and the ability to more accurately simulate a system with multiple interaction sites, this model extends the range of frictional systems and phenomena that can be investigated. This article is part of the theme issue ‘Nanocracks in nature and industry’.  more » « less
Award ID(s):
1761874 1720530
PAR ID:
10377716
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
380
Issue:
2232
ISSN:
1364-503X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract While analysis of glacial seismicity continues to be a widely used method for interpreting glacial processes, the underlying mechanics controlling glacial stick‐slip seismicity remain speculative. Here, we report on laboratory shear experiments of debris‐laden ice slid over a bedrock asperity under carefully controlled conditions. By modifying the elastic loading stiffness, we generated the first laboratory icequakes. Our work represents the first comprehensive lab observations of unstable ice‐slip events and replicates several seismological field observations of glacier slip, such as slip velocity, stress drop, and the relationship between stress drop and recurrence interval. We also observe that stick‐slips initiate above a critical driving velocity and that stress drop magnitude decreases with further increases in velocity, consistent with friction theory and rock‐on‐rock friction laboratory experiments. Our results demonstrate that glacier slip behavior can be accurately predicted by the constitutive rate‐and‐state friction laws that were developed for rock friction. 
    more » « less
  2. Abstract The mechanoreceptors of the human tactile sensory system contribute to natural grasping manipulations in everyday life. However, in the case of robot systems, attempts to emulate humans’ dexterity are still limited by tactile sensory feedback. In this work, a soft optical lightguide is applied as an afferent nerve fiber in a tactile sensory system. A skin‐like soft silicone material is combined with a bristle friction model, which is capable of fast and easy fabrication. Due to this novel design, the soft sensor can provide not only normal force (up to 5 Newtons) but also lateral force information generated by stick‐slip processes. Through a static force test and slip motion test, its ability to measure normal forces and to detect stick‐slip events is demonstrated. Finally, using a robotic gripper, real‐time control applications are investigated where the sensor helps the gripper apply sufficient force to grasp objects without slipping. 
    more » « less
  3. ABSTRACTDrilling vibrations can cause inefficient drilling and accelerated damage to system components. Therefore, reducing or eliminating such vibrations is a major focus area for natural gas and geothermal drilling applications. One particularly important vibration mode is stick-slip. Stick-slip occurs when the bottom-hole angular velocity starts oscillating while the top hole angular velocity remains relatively constant. This not only causes poor drilling, it is also difficult to detect using surface sensors. In this work, we describe the development and testing of a benchtop drilling system for studying stick-slip dynamics and mitigation. We show how this system can produce stick-slip oscillations. Next, we use this data to formulate a data-driven rock-bit interaction model. This model can be combined with linear systems analysis to predict stick-slip and understand mitigation methods. We describe out instrumentation that enables closed-loop control under simulated communications constraints. We conclude by providing preliminary experimental data on bench-level stick-slip. INTRODUCTIONExploration via autonomous drilling processes for geothermal resources is an important focus area for drilling research. However, to fully realize the clean-energy promise of geothermal energy, key challenges still need to be resolved.Issues arising in the drilling process often originate from a drillstring's increased susceptibility to vibrational oscillations as depths increase. Some examples of drilling vibrations include stick-slip (Navarro-Lopez and Suarez, 2004), bit-bounce (Spanos et al., 1995), and whirl (Jansen, 1991). Torsional oscillations are the focus of this work.Torsional vibrations result in a destructive phenomenon known as stick-slip. Initiated at the bit-rock surface, the drillstring bit experiences large angular velocity oscillations not seen at the surface (Pavone and Desplans, 1994; Besselink et al., 2011; Kessai et al., 2020). Stick-slip results in premature bit wear and drillstring fracture.Stick-slip is a fundamentally nonlinear and unpredictable phenomena. Stick-slip results from the combination of bit-rock interactions and drillstring compliance. As a result, there is a key need for experimental studies of stick-slip dynamics and mitigation. 
    more » « less
  4. Abstract Rock friction tests have made profound contributions to our understanding of earthquake processes. Most rock friction tests focused on fault strength evolution during velocity steps or at specific slip rates and the characteristics during stick‐slip events such as dynamic rupture propagation and the transition from stable sliding to instability, with little attention paid to the transient acceleration and deceleration periods. Here, we present Westerly Granite fault friction test results using a unique pneumatically powered apparatus with high acceleration of up to 50 g, focusing on the transient stages of fast fault acceleration and deceleration during both high‐speed sliding and stick‐slip events. Our data demonstrates the dominating velocity‐weakening behavior at transient stages of fault acceleration and deceleration, with a 1/V dependence for peak friction and deceleration lobe consistent with the flash‐heating model but with the acceleration lobe consistently deviating from the 1/V dependence. Our analysis of velocity‐dependent friction between dynamic rupture events, stick‐slips, and high‐speed friction tests reveals the significance of high acceleration in influencing transient fault weakening during dynamic weakening. We further demonstrate that the deviation of the friction‐velocity curve from the 1/V trend during fault acceleration is associated with the contribution of the dynamic rupturing process during the initiation of fault slip. 
    more » « less
  5. Abstract Like faults, landslides can slip slowly for decades or accelerate catastrophically. However, whereas experimentally derived friction laws provide mechanistically based explanations for similarly diverse behavior on faults, little monitoring exists over the temporal and spatial scales required to more clearly illuminate the mechanics of landslide friction. Here we show that displacement of an active slow landslide is accommodated primarily through mm‐scale stick‐slip events that recur on timescales of minutes to hours on asperities that are small (<100 m) relative to the landslide. The frequency of slip events tracks both landslide velocity and pore fluid pressure. The stick‐slip nature demonstrates by itself that slow slip is governed, at least in part, by velocity‐weakening frictional asperities. This observation, in combination with the sensitivity of slow slip to pore fluid pressure and the small relative scale of asperities, suggests similarities between slow slip in landslides and episodic slow slip along faults. 
    more » « less