skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PROS: an efficient pattern-driven compressive sensing framework for low-power biopotential-based wearables with on-chip intelligence
While the global healthcare market of wearable devices has been growing significantly in recent years and is predicted to reach $60 billion by 2028, many important healthcare applications such as seizure monitoring, drowsiness detection, etc. have not been deployed due to the limited battery lifetime, slow response rate, and inadequate biosignal quality.This study proposes PROS, an efficient pattern-driven compressive sensing framework for low-power biopotential-based wearables. PROS eliminates the conventional trade-off between signal quality, response time, and power consumption by introducing tiny pattern recognition primitives and a pattern-driven compressive sensing technique that exploits the sparsity of biosignals. Specifically, we (i) develop tiny machine learning models to eliminate irrelevant biosignal patterns, (ii) efficiently perform compressive sampling of relevant biosignals with appropriate sparse wavelet domains, and (iii) optimize hardware and OS operations to push processing efficiency. PROS also provides an abstraction layer, so the application only needs to care about detected relevant biosignal patterns without knowing the optimizations underneath.We have implemented and evaluated PROS on two open biosignal datasets with 120 subjects and six biosignal patterns. The experimental results on unknown subjects of a practical use case such as epileptic seizure monitoring are very encouraging. PROS can reduce the streaming data rate by 24X while maintaining high fidelity signal. It boosts the power efficiency of the wearable device by more than 1200\% and enables the ability to react to critical events immediately on the device. The memory and runtime overheads of PROS are minimal, with a few KBs and 10s of milliseconds for each biosignal pattern, respectively. PROS is currently adopted in research projects in multiple universities and hospitals.  more » « less
Award ID(s):
2132112 1846541
PAR ID:
10377889
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 28th Annual International Conference on Mobile Computing And Networking
Page Range / eLocation ID:
661 to 675
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ObjectiveThe factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. MethodsIn this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist‐worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter–Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. ResultsTen subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SignificanceSeizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time‐varying approaches to epilepsy care. 
    more » « less
  2. Abstract Wearable electronics play important roles in noninvasive, continuous, and personalized monitoring of multiple biosignals generated by the body. To unleash their full potential for the next‐generation human‐centered bio‐integrated electronics, wireless sensing capability is a desirable feature. However, state‐of‐the‐art wireless sensing technologies exploit rigid and bulky electronic modules for power supply, signal generation, and data transmission. This study reports a battery‐free device technology based on a “two‐part” resonance circuit model with modularized, physically separated, and detachable functional units for magnetic coupling and biosensing. The resulting platform combines advantages of electronics and microfluidics with low cost, minimized form factors, and improved performance stability. Demonstration of a detachable sweat patch capable of simultaneous recording of cortisol concentration, pH value, and temperature highlights the potential of the “two‐part” circuit for advanced, transformative biosensing. The resulting wireless sensors provide a new engineering solution to monitoring biosignals through intimate and seamless integration with skin surfaces. 
    more » « less
  3. Wearable devices have made transformative advancements driven by the integration of nanomaterials, enhancing their versatility, sensitivity, and overall performance. The emerging 3D printing techniques revolutionize traditional fabrication, enabling the high-efficiency fabrication for sophisticated and miniaturized healthcare monitoring systems. This review summarizes the essential properties of nanomaterials and their roles in 3D printing and examines the pros and cons of various 3D printing methods. Key applications of 3D-printed wearable devices, showcasing the synergistic contributions of nanomaterials, are introduced to provide a comprehensive overview of the state-of-the-art progress and the promising prospects for next-generation healthcare monitoring. 
    more » « less
  4. The ability for wearable devices to collect high-fidelity biosignals continuously over weeks and months at a time has become an increasingly sought-after characteristic to provide advanced diagnostic and therapeutic capabilities. Wearable devices for this purpose face a multitude of challenges such as formfactors with long-term user acceptance and power supplies that enable continuous operation without requiring extensive user interaction. This review summarizes design considerations associated with these attributes and summarizes recent advances toward continuous operation with high-fidelity biosignal recording abilities. The review also provides insight into systematic barriers for these device archetypes and outlines most promising technological approaches to expand capabilities. We conclude with a summary of current developments of hardware and approaches for embedded artificial intelligence in this wearable device class, which is pivotal for next generation autonomous diagnostic, therapeutic, and assistive health tools. 
    more » « less
  5. Wireless Body Area Networks (WBANs) are pivotal in health care and wearable technologies, enabling seamless communication between miniature sensors and devices on or within the human body. These biosensors capture critical physiological parameters, ranging from body temperature and blood oxygen levels to real-time electrocardiogram readings. However, WBANs face significant challenges during and after deployment, including energy conservation, security, reliability, and failure vulnerability. Sensor nodes, which are often battery-operated, expend considerable energy during sensing and transmission due to inherent spatiotemporal patterns in biomedical data streams. This paper provides a comprehensive survey of data-driven approaches that address these challenges, focusing on device placement and routing, sampling rate calibration, and the application of machine learning (ML) and statistical learning techniques to enhance network performance. Additionally, we validate three existing models (statistical, ML, and coding-based models) using two real datasets, namely the MIMIC clinical database and biomarkers collected from six subjects with a prototype biosensing device developed by our team. Our findings offer insights into strategies for optimizing energy efficiency while ensuring security and reliability in WBANs. We conclude by outlining future directions to leverage approaches to meet the evolving demands of healthcare applications. 
    more » « less