skip to main content

Title: Sedimentary response of a structural estuary to Holocene coseismic subsidence
Abstract Stratigraphic evidence for coseismic subsidence has been documented in active-margin estuaries throughout the world. Most of these studies have been conducted in subduction zone or strike-slip settings; however, the stratigraphic response to coseismic subsidence in other tectonic settings would benefit from further study. Here we show evidence of late Holocene coseismic subsidence in a structural estuary in southern California. Below the modern marsh surface, an organic-rich mud containing marsh gastropods, foraminifera, and geochemical signatures indicative of terrestrial influence (mud facies) is sharply overlain by a blue-gray sand containing intertidal and subtidal bivalves and geochemical signatures of marine influence (gray sand facies). We use well-established criteria to interpret this contact as representing an abrupt 1.3 ± 1.1 m rise in relative sea level (RSL) generated by coseismic subsidence with some contribution from sediment compaction and/or erosion. The contact dates to 1.0 ± 0.3 ka and is the only event indicative of rapid RSL rise in the 7 k.y. sedimentary record studied. Consistent with observations made in previous coseismic subsidence studies, an acceleration in tidal-flat sedimentation followed this abrupt increase in accommodation; however, the recovery of the estuary to its pre-subsidence elevations was spatially variable and required 500–900 years, which is more » longer than the recovery time estimated for estuaries with larger tidal ranges and wetter climates. « less
Authors:
; ; ; ; ;
Award ID(s):
1831937
Publication Date:
NSF-PAR ID:
10378024
Journal Name:
GSA Bulletin
Volume:
134
Issue:
7-8
Page Range or eLocation-ID:
2037 to 2050
ISSN:
0016-7606
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stratigraphic, lithologic, foraminiferal, and radiocarbon analyses indicate that at least four abrupt mud-over-peat contacts are recorded across three sites (Jacoby Creek, McDaniel Creek, and Mad River Slough) in northern Humboldt Bay, California, USA (∼44.8°N, −124.2°W). The stratigraphy records subsidence during past megathrust earthquakes at the southern Cascadia subduction zone ∼40 km north of the Mendocino Triple Junction. Maximum and minimum radiocarbon ages on plant macrofossils from above and below laterally extensive (>6 km) contacts suggest regional synchroneity of subsidence. The shallowest contact has radiocarbon ages that are consistent with the most recent great earthquake at Cascadia, which occurred at 250 cal yr B.P. (1700 CE). Using Bchron and OxCal software, we model ages for the three older contacts of ca. 875 cal yr B.P., ca. 1120 cal yr B.P., and ca. 1620 cal yr B.P. For each of the four earthquakes, we analyze foraminifera across representative mud-over-peat contacts selected from McDaniel Creek. Changes in fossil foraminiferal assemblages across all four contacts reveal sudden relative sea-level (RSL) rise (land subsidence) with submergence lasting from decades to centuries. To estimate subsidence during each earthquake, we reconstructed RSL rise across the contacts using the fossil foraminiferal assemblages in a Bayesian transfer function.more »The coseismic subsidence estimates are 0.85 ± 0.46 m for the 1700 CE earthquake, 0.42 ± 0.37 m for the ca. 875 cal yr B.P. earthquake, 0.79 ± 0.47 m for the ca. 1120 cal yr B.P. earthquake, and ≥0.93 m for the ca. 1620 cal yr B.P. earthquake. The subsidence estimate for the ca. 1620 cal yr B.P. earthquake is a minimum because the pre-subsidence paleoenvironment likely was above the upper limit of foraminiferal habitation. The subsidence estimate for the ca. 875 cal yr B.P. earthquake is less than (<50%) the subsidence estimates for other contacts and suggests that subsidence magnitude varied over the past four earthquake cycles in southern Cascadia.« less
  2. Abstract Lithology and microfossil biostratigraphy beneath the marshes of a central Oregon estuary limit geophysical models of Cascadia megathrust rupture during successive earthquakes by ruling out >0.5 m of coseismic coastal subsidence for the past 2000 yr. Although the stratigraphy in cores and outcrops includes as many as 12 peat-mud contacts, like those commonly inferred to record subsidence during megathrust earthquakes, mapping, qualitative diatom analysis, foraminiferal transfer function analysis, and 14C dating of the contacts failed to confirm that any contacts formed through subsidence during great earthquakes. Based on the youngest peat-mud contact’s distinctness, >400 m distribution, ∼0.6 m depth, and overlying probable tsunami deposit, we attribute it to the great 1700 CE Cascadia earthquake and(or) its accompanying tsunami. Minimal changes in diatom assemblages from below the contact to above its probable tsunami deposit suggest that the lower of several foraminiferal transfer function reconstructions of coseismic subsidence across the contact (0.1–0.5 m) is most accurate. The more limited stratigraphic extent and minimal changes in lithology, foraminifera, and(or) diatom assemblages across the other 11 peat-mud contacts are insufficient to distinguish them from contacts formed through small, gradual, or localized changes in tide levels during river floods, storm surges, and gradual sea-levelmore »rise. Although no data preclude any contacts from being synchronous with a megathrust earthquake, the evidence is equally consistent with all contacts recording relative sea-level changes below the ∼0.5 m detection threshold for distinguishing coseismic from nonseismic changes.« less
  3. Permocarboniferous strata of basins proximal to the Central Pangaean Mountains in France archive regional paleoequatorial climate during a unique interval in geological history (late Paleozoic Pangaean assembly, ice age collapse, megamonsoon inception). The voluminous (estimated 2 km) succession of exclusively fine-grained redbeds that composes the Permian Salagou Formation (Lodéve Basin, France) has been interpreted as recording either lacustrine or fluvial settings. We present preliminary field data to explore the hypothesis that these deposits record eolian transport, and ultimate deposition as either loess or in a shallow lacustrine environment. Fieldwork includes ~1000 m of section described at dm-scale, and magnetic susceptibility measured at 0.5 m intervals, from sections strategically located in both proximal and distal areas, and from all stratigraphic levels of the unit to assess spatial and temporal variations. These data indicate that the lower and middle Salagou Formation is dominated by internally massive, red mud-siltstone with no evidence of channeling. Up-section, a higher frequency of ripples, rare hummocky cross stratification, and mudcracks record the presence of shallow water, but with no channeling, nor units of grain size exceeding very fine-grained sand. Randomly-oriented slickensides at various localities in the mid-upper Salagou may represent incipient pedogenesis. The lack of evidence formore »channels and other fluvial features casts doubt on a fluvial interpretation. A lacustrine interpretation is consistent with local evidence of shallow water. However, in the absence of fluvial transport indicators, large volumes of entirely fine-grained material that were delivered to the Lodéve basin call for eolian transport, and thus a loess or shallow lacustrine interpretation. The documentation of voluminous paleoloess in eastern equatorial Pangea during the Permian could reflect the influence of glaciation associated with the Variscan highlands. Together with previous studies that detail Permian loess in western equatorial Pangea, this work impacts our understandingof the global Late Paleozoic climate system and presents a need to reevaluate modeling parameters (e.g. equatorial mountain glaciation, atmospheric dust loading).« less
  4. Abstract

    Epikarst estuary response to hydroclimate change remains poorly understood, despite the well-studied link between climate and karst groundwater aquifers. The influence of sea-level rise and coastal geomorphic change on these estuaries obscures climate signals, thus requiring careful development of paleoenvironmental histories to interpret the paleoclimate archives. We used foraminifera assemblages, carbon stable isotope ratios (δ13C) and carbon:nitrogen (C:N) mass ratios of organic matter in sediment cores to infer environmental changes over the past 5300 years in Celestun Lagoon, Yucatan, Mexico. Specimens (> 125 µm) from modern core top sediments revealed three assemblages: (1) a brackish mangrove assemblage of agglutinatedMiliamminaandAmmotiumtaxa and hyalineHaynesina(2) an inner-shelf marine assemblage ofBolivina,Hanzawaia, andRosalina,and (3) a brackish assemblage dominated byAmmoniaandElphidium. Assemblages changed along the lagoon channel in response to changes in salinity and vegetation, i.e. seagrass and mangrove. In addition to these three foraminifera assemblages, lagoon sediments deposited since 5300 cal yr BP are comprised of two more assemblages, defined byArchaiasandLaevipeneroplis,which indicate marineThalassiaseagrasses, andTrichohyalus,which indicates restricted inland mangrove ponds. Our data suggest that Celestun Lagoon displayed four phases of development: (1) an inland mangrove pond (5300 BP) (2) a shallow unprotected coastline with marine seagrass and barrier island initiation (4900 BP) (3) a protected brackish lagoon (3000 BP), and (4) amore »protected lagoon surrounded by mangroves (1700 BP). Stratigraphic (temporal) changes in core assemblages resemble spatial differences in communities across the modern lagoon, from the southern marine sector to the northern brackish region. Similar temporal patterns have been reported from other Yucatan Peninsula lagoons and fromcenotes(Nichupte, Aktun Ha), suggesting a regional coastal response to sea level rise and climate change, including geomorphic controls (longshore drift) on lagoon salinity, as observed today. Holocene barrier island development progressively protected the northwest Yucatan Peninsula coastline, reducing mixing between seawater and rain-fed submarine groundwater discharge. Superimposed on this geomorphic signal, assemblage changes that are observed reflect the most severe regional wet and dry climate episodes, which coincide with paleoclimate records from lowland lake archives (Chichancanab, Salpeten). Our results emphasize the need to consider coastal geomorphic evolution when using epikarst estuary and lagoon sediment archives for paleoclimate reconstruction and provide evidence of hydroclimate changes on the Yucatan Peninsula.

    « less
  5. The Indian (southwest) summer monsoon is one of the most intense climatic phenomena on Earth. Its long-term development has been linked to the growth of high topography in South and Central Asia. The Indian continental margin, adjoining the Arabian Sea, offers a unique opportunity to investigate tectonic–climatic interactions and the net impact of these processes on weathering and erosion of the western Himalaya. During International Ocean Discovery Program Expedition 355, two sites (U1456 and U1457) were drilled in Laxmi Basin in the eastern Arabian Sea to document the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. In addition, recovering basement from the eastern Arabian Sea provides constraints on the early rifting history of the western continental margin of India with special emphasis on continental breakup between India and the Seychelles and its relationship to the plume-related volcanism of the Deccan Plateau. Drilling and coring operations during Expedition 355 recovered sediment from Sites U1456 and U1457 in the Laxmi Basin, penetrating 1109.4 and 1108.6 m below seafloor (mbsf), respectively. Drilling reached sediment dated to 13.5–17.7 Ma (late early to early middle Miocene) at Site U1456, although with a large hiatus between the lowermost sediment and overlyingmore »deposits dated to <10.9 Ma. At Site U1457, a much longer hiatus occurs near the base of the cored section, spanning from 10.9 to ~62 Ma. At both sites, hiatuses span ~8.2–9.2 and ~3.6–5.6 Ma, with a possible condensed section spanning ~2.0–2.6 Ma, although the total duration for each hiatus is slightly different between the two sites. A major submarine fan draining the western Himalaya and Karakoram must have been supplying sediment to the eastern Arabian Sea since at least ~17 Ma. Sand mineral assemblages indicate that the Greater Himalayan Crystalline Sequence was fully exposed to the surface by this time. Most of the recovered sediment appears to be derived from the Indus River and includes minerals that are unique to the Indus Suture Zone, in particular glaucophane and hypersthene, most likely originating from the structural base of the Kohistan arc. Pliocene sandy intervals at Site U1456 were deposited in lower fan “sheet lobe” settings, with intervals of basin plain turbidites separated by hemipelagic muddy sections deposited during the Miocene. Site U1457 is more distal in facies, reflecting its more marginal setting. No major active lobe appears to have affected the Laxmi Basin since the Middle Pleistocene (~1.2 Ma). We succeeded in recovering sections spanning the 8 Ma climatic transition, when monsoon intensity is believed to have changed strongly, although the nature of this change awaits postcruise analysis. We also recovered sediment from a large mass transport deposit measuring ~330 and ~190 m thick at Sites U1456 and U1457, respectively. This section includes an upper sequence of slump-folded muddy and silty rocks, as well as underlying calcarenites and limestone breccias, together with smaller amounts of volcanic clasts, all of which are likely derived from the western Indian continental shelf. Identification of similar facies on the regional seismic lines in Laxmi Basin suggests that these deposits form parts of one of the world’s largest mass transport deposits. Coring of igneous basement was successful at Site U1457. Recovery of massive basalt and associated volcaniclastic sediment at this site should address the key questions related to rifting and volcanism associated with formation of Laxmi Basin. Geochemical analysis is required to understand the petrogenesis and thus the tectonic setting of volcanism that will reveal whether it is oceanic basalt or volcanic rock contaminated by underlying continental crust or continental flood basalt. However, the fact that the lavas are massive and have few vesicles implies water depths of eruption likely deeper than 2000 m. This precludes opening of the basin in the presence of a major mantle thermal anomaly, such as that associated with the Deccan Large Igneous Province. Other observations made at the two sites during Expedition 355 provide vital constraints on the rift history of this margin. Heat flow measurements at the two drill sites were calculated to be ~57 and ~60 mW/m2. Such heat flow values are compatible with those observed in average oceanic crust of 63–84 Ma age, as well as with the presence of highly extended continental crust. Postcruise analyses of the more than ~1722 m of core will provide further information about the nature of tectonic–climatic interactions in this global type area for such studies.« less