skip to main content


Title: How Many Elements Matter?
Abstract Some studies of stars’ multielement abundance distributions suggest at least 5–7 significant dimensions, but others show that many elemental abundances can be predicted to high accuracy from [Fe/H] and [Mg/Fe] (or [Fe/H] and age) alone. We show that both propositions can be, and are, simultaneously true. We adopt a machine-learning technique known as normalizing flow to reconstruct the probability distribution of Milky Way disk stars in the space of 15 elemental abundances measured by APOGEE. Conditioning on T eff and log g minimizes the differential systematics. After further conditioning on [Fe/H] and [Mg/Fe], the residual scatter for most abundances is σ [ X /H] ≲ 0.02 dex, consistent with APOGEE’s reported statistical uncertainties of ∼0.01–0.015 dex and intrinsic scatter of 0.01–0.02 dex. Despite the small scatter, residual abundances display clear correlations between elements, which we show are too large to be explained by measurement uncertainties or by the finite sampling noise. We must condition on at least seven elements to reduce the correlations to a level consistent with the observational uncertainties. Our results demonstrate that cross-element correlations are a much more sensitive probe of a hidden structure than dispersion, and they can be measured precisely in a large sample even if the star-by-star measurement noise is comparable to the intrinsic scatter. We conclude that many elements have an independent story to tell, even for the mundane disk stars and elements produced by the core-collapse and Type Ia supernovae. The only way to learn these lessons is to measure the abundances directly, and not merely infer them.  more » « less
Award ID(s):
1909841
NSF-PAR ID:
10378439
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We apply a novel statistical analysis to measurements of 16 elemental abundances in 34,410 Milky Way disk stars from the final data release (DR17) of APOGEE-2. Building on recent work, we fit median abundance ratio trends [X/Mg] versus [Mg/H] with a 2-process model, which decomposes abundance patterns into a “prompt” component tracing core-collapse supernovae and a “delayed” component tracing Type Ia supernovae. For each sample star, we fit the amplitudes of these two components, then compute the residuals Δ[X/H] from this two-parameter fit. The rms residuals range from ∼0.01–0.03 dex for the most precisely measured APOGEE abundances to ∼0.1 dex for Na, V, and Ce. Thecorrelationsof residuals reveal a complex underlying structure, including a correlated element group comprised of Ca, Na, Al, K, Cr, and Ce and a separate group comprised of Ni, V, Mn, and Co. Selecting stars poorly fit by the 2-process model reveals a rich variety of physical outliers and sometimes subtle measurement errors. Residual abundances allow for the comparison of populations controlled for differences in metallicity and [α/Fe]. Relative to the main disk (R= 3–13 kpc), we find nearly identical abundance patterns in the outer disk (R= 15–17 kpc), 0.05–0.2 dex depressions of multiple elements in LMC and Gaia Sausage/Enceladus stars, and wild deviations (0.4–1 dex) of multiple elements inωCen. The residual abundance analysis opens new opportunities for discovering chemically distinctive stars and stellar populations, for empirically constraining nucleosynthetic yields, and for testing chemical evolution models that include stochasticity in the production and redistribution of elements.

     
    more » « less
  2. Abstract Observations of the Milky Way’s low- α disk show that several element abundances correlate with age at fixed metallicity, with unique slopes and small scatters around the age–[X/Fe] relations. In this study, we turn to simulations to explore the age–[X/Fe] relations for the elements C, N, O, Mg, Si, S, and Ca that are traced in a FIRE-2 cosmological zoom-in simulation of a Milky Way–like galaxy, m12i, and understand what physical conditions give rise to the observed age–[X/Fe] trends. We first explore the distributions of mono-age populations in their birth and current locations, [Fe/H], and [X/Fe], and find evidence for inside-out radial growth for stars with ages <7 Gyr. We then examine the age–[X/Fe] relations across m12i’s disk and find that the direction of the trends agrees with observations, apart from C, O, and Ca, with remarkably small intrinsic scatters, σ int (0.01 − 0.04 dex). This σ int measured in the simulations is also metallicity dependent, with σ int ≈ 0.025 dex at [Fe/H] = −0.25 dex versus σ int ≈ 0.015 dex at [Fe/H] = 0 dex, and a similar metallicity dependence is seen in the GALAH survey for the elements in common. Additionally, we find that σ int is higher in the inner galaxy, where stars are older and formed in less chemically homogeneous environments. The age–[X/Fe] relations and the small scatter around them indicate that simulations capture similar chemical enrichment variance as observed in the Milky Way, arising from stars sharing similar element abundances at a given birth place and time. 
    more » « less
  3. Abstract

    We measure abundances of 12 elements (Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni) in a sample of 86 metal-poor (−2 ≲ [Fe/H] ≲ −1) subgiant stars in the solar neighborhood. Abundances are derived from high-resolution spectra taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument on the Large Binocular Telescope, modeled using iSpec and MOOG. By carefully quantifying the impact of photon-noise (<0.05 dex for all elements), we robustly measure theintrinsicscatter of abundance ratios. At fixed [Fe/H], the rms intrinsic scatter in [X/Fe] ranges from 0.04 (Cr) to 0.16 dex (Na), with a median of 0.08 dex. Scatter in [X/Mg] is similar, and accounting for [α/Fe] only reduces the overall scatter moderately. We consider several possible origins of the intrinsic scatter with particular attention to fluctuations in the relative enrichment by core-collapse supernovae (CCSN) and Type Ia supernovae and stochastic sampling of the CCSN progenitor mass distribution. The stochastic sampling scenario provides a good quantitative explanation of our data if the effective number of CCSN contributing to the enrichment of a typical sample star isN∼ 50. At the median metallicity of our sample, this interpretation implies that the CCSN ejecta are mixed over a gas mass ∼6 × 104Mbefore forming stars. The scatter of elemental abundance ratios is a powerful diagnostic test for simulations of star formation, feedback, and gas mixing in the early phases of the Galaxy.

     
    more » « less
  4. ABSTRACT

    One of the high-level goals of Galactic archaeology is chemical tagging of stars across the Milky Way to piece together its assembly history. For this to work, stars born together must be uniquely chemically homogeneous. Wide binary systems are an important laboratory to test this underlying assumption. Here, we present the detailed chemical abundance patterns of 50 stars across 25 wide binary systems comprised of main-sequence stars of similar spectral type identified in Gaia DR2 with the aim of quantifying their level of chemical homogeneity. Using high-resolution spectra obtained with McDonald Observatory, we derive stellar atmospheric parameters and precise detailed chemical abundances for light/odd-Z (Li, C, Na, Al, Sc, V, Cu), α (Mg, Si, Ca), Fe-peak (Ti, Cr, Mn, Fe, Co, Ni, Zn), and neutron capture (Sr, Y, Zr, Ba, La, Nd, Eu) elements. Results indicate that 80 per cent (20 pairs) of the systems are homogeneous in [Fe/H] at levels below 0.02 dex. These systems are also chemically homogeneous in all elemental abundances studied, with offsets and dispersions consistent with measurement uncertainties. We also find that wide binary systems are far more chemically homogeneous than random pairings of field stars of similar spectral type. These results indicate that wide binary systems tend to be chemically homogeneous but in some cases they can differ in their detailed elemental abundances at a level of [X/H] ∼ 0.10 dex, overall implying chemical tagging in broad strokes can work.

     
    more » « less
  5. Abstract

    Phosphorus (P) is a critical element for life on Earth, yet the cosmic production sites of P are relatively uncertain. To understand how P has evolved in the solar neighborhood, we measured abundances for 163 FGK stars over a range of –1.09 < [Fe/H] < 0.47 using observations from the Habitable-zone Planet Finder instrument on the Hobby–Eberly Telescope. Atmospheric parameters were calculated by fitting a combination of astrometry, photometry, and Fe I line equivalent widths. Phosphorus abundances were measured by matching synthetic spectra to a P I feature at 10529.52 Å. Our [P/Fe] ratios show that chemical evolution models generally underpredict P over the observed metallicity range. Additionally, we find that the [P/Fe] differs by ∼0.1 dex between thin disk and thick disk stars that were identified with kinematics. The P abundances were compared withα-elements, iron-peak, odd-Z, and s-process elements, and we found that the evolution of P in the disk most strongly resembles that of theα-elements. We also find that molar P/C and N/C ratios for our sample match the scatter seen from other abundance studies. Finally, we measure a [P/Fe] = 0.09 ± 0.1 ratio in one low-αhalo star and probable Gaia–Sausage–Enceladus member, an abundance ratio ∼0.3–0.5 dex lower than the other Milky Way disk and halo stars at similar metallicities. Overall, we find that P is likely most significantly produced by massive stars in core-collapse supernovae, based on the largest P abundance survey to date.

     
    more » « less