skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A sleeve and bulk method for fabrication of photonic structures with features on multiple length scales
Abstract Traditional photonic structures such as photonic crystals utilize (a) large arrays of small features with the same size and pitch and (b) a small number of larger features such as diffraction outcouplers. In conventional nanofabrication, separate lithography and etch steps are used for small and large features in order to employ process parameters that lead to optimal pattern transfer and side-wall profiles for each feature-size category, thereby overcoming challenges associated with reactive ion etching lag. This approach cannot be scaled to more complex photonic structures such as those emerging from inverse design protocols. Those structures include features with a large range of sizes such that no distinction between small and large can be made. We develop a sleeve and bulk etch protocol that can be employed to simultaneously pattern features over a wide range of sizes while preserving the desired pattern transfer fidelity and sidewall profiles. This approach reduces the time required to develop a robust process flow, simplifies the fabrication of devices with wider ranges of feature sizes, and enables the fabrication of devices with increasingly complex structure.  more » « less
Award ID(s):
1839056 2011824
PAR ID:
10378791
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nanotechnology
Volume:
34
Issue:
3
ISSN:
0957-4484
Page Range / eLocation ID:
035302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Disorder is an essential parameter in photonic systems and devices, influencing phenomena such as the robustness of topological photonic states and the Anderson localization of modes in waveguides. We develop and demonstrate a method for both analyzing and visualizing positional, size, and shape disorder in periodic structures such as photonic crystals. This analysis method shows selectivity for disorder type and sensitivity to disorder down to less than 1%. We show that the method can be applied to more complex shapes such as those used in topological photonics. The method provides a powerful tool for process development and quality control, including analyzing the precision of E-Beam Lithography before patterns are transferred; quantifying the precision limits of lithography, deposition, or etch processes; and studying the intentional displacement of individual objects within otherwise periodic arrays. 
    more » « less
  2. Abstract The fabrication of three-dimensional (3D) microscale structures is critical for many applications, including strong and lightweight material development, medical device fabrication, microrobotics, and photonic applications. While 3D microfabrication has seen progress over the past decades, complex multicomponent integration with small or hierarchical feature sizes is still a challenge. In this study, an optical positioning and linking (OPAL) platform based on optical tweezers is used to precisely fabricate 3D microstructures from two types of micron-scale building blocks linked by biochemical interactions. A computer-controlled interface with rapid on-the-fly automated recalibration routines maintains accuracy even after placing many building blocks. OPAL achieves a 60-nm positional accuracy by optimizing the molecular functionalization and laser power. A two-component structure consisting of 448 1-µm building blocks is assembled, representing the largest number of building blocks used to date in 3D optical tweezer microassembly. Although optical tweezers have previously been used for microfabrication, those results were generally restricted to single-material structures composed of a relatively small number of larger-sized building blocks, with little discussion of critical process parameters. It is anticipated that OPAL will enable the assembly, augmentation, and repair of microstructures composed of specialty micro/nanomaterial building blocks to be used in new photonic, microfluidic, and biomedical devices. 
    more » « less
  3. Abstract Polymeric systems displaying spontaneous formation of surface wrinkling patterns are useful for a wide range of applications, such as diffraction gratings, flexible electronics, smart adhesives, optical devices, and cell culture platforms. Conventional fabrication techniques for wrinkling patterns involves multitude of processing steps and impose significant limitations on fabrication of hierarchical patterns, creating wrinkles on 3D and nonplanar structures, the scalability of the manufacturing process, and the integration of wrinkle fabrication process into a continuous manufacturing process. In this work, 4D printing of surface morphing hydrogels enabling direct fabrication of wrinkling patterns on curved and/or 3D structures with user‐defined and spatially controlled pattern geometry and size is reported. The key to successful printing is to tailor the photopolymerization time and partial crosslinking time of the hydrogel inks. The interplay between crosslinker concentration and postprinting crosslinking time allow for the control over wrinkling morphology and the characteristic size of the patterns. The pattern alignment is controlled by the print strut size—the size of the solid material extruded from the print nozzle in the form of a line. To demonstrate the utility of the approach, tunable optical devices, a solvent/humidity sensor for microchips, and cell culture platforms to control stem cell shape are fabricated. 
    more » « less
  4. Abstract Nature provides us with a large number of functional material systems consisting of hierarchical structures, where significant variations in dimensions are present. Such hierarchical structures are difficult to build by traditional manufacturing processes due to manufacturing limitations. Nowadays, three-dimensional (3D) objects with complex structures can be built by gradually accumulating in a layer-based additive manufacturing (AM); however, the hierarchical structure measured from macroscale to nanoscale sizes still raises significant challenges to the AM processes, whose manufacturing capability is intrinsically specified within a certain scope. It is desired to develop a multiscale AM process to narrow this gap between scales of feature in hierarchical structures. This research aims to investigate an integration approach to fabricating hierarchical objects that have macro-, micro-, and nano-scales features in an object. Firstly, the process setup and the integrated process of two-photon polymerization (TPP), immersed surface accumulation (ISA), and mask image projection-based stereolithography (MIP-SL) were introduced to address the multiscale fabrication challenge. Then, special hierarchical design and process planning toward integrating multiple printing processes are demonstrated. Lastly, we present two test cases built by our hierarchical printing method to validate the feasibility and efficiency of the proposed multiscale hierarchical printing approach. The results demonstrated the capability of the developed multiscale 3D printing process and showed its future potential in various novel applications, such as optics, microfluidics, cell culture, as well as interface technology. 
    more » « less
  5. In this manuscript, we report the facile fabrication of large-area model membranes with highly uniform and high aspect ratio pores with diameters <20 nm. These membranes are useful for fundamental investigations of separation by size exclusion in the ultrafiltration regime, where species to be separated from solution have dimensions of 1–100 nm. Such investigations require membranes with narrow pores and high aspect ratios such that the Hagen–Poiseuille equation is followed, enabling well-known models such as the hindered transport model to be evaluated and other affecting factors to be ignored. We demonstrate that the sub-20 nm pores in the membrane are of sufficiently high aspect ratio such that water flux through the membrane is consistent with the Hagen–Poiseuille equation. The fabrication relies on self-assembling block copolymers to form uniform, densely packed patterns with sub-20 nm resolution, sequential infiltration synthesis to convert the block copolymer in situ into a mask with adequate contrast to etch pores with an aspect ratio >5, and low-resolution photolithography to transfer the pattern over a large area into a silicon nitride membrane. Model membranes with narrow pore-size distribution fabricated in this way provide the means to investigate parameters that impact size-selective ultrafiltration separations such as the relationships between solute or particle size and pore size, their distributions, and rejection profiles, and, therefore, test the validity or limits of separation models. 
    more » « less