skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient identification for modeling high-dimensional brain dynamics
System identification poses a significant bottleneck to characterizing and controlling complex systems. This challenge is greatest when both the system states and parameters are not directly accessible, leading to a dual-estimation problem. Current approaches to such problems are limited in their ability to scale with many-parameter systems, as often occurs in networks. In the current work, we present a new, computationally efficient approach to treat large dual-estimation problems. In this work, we derive analytic back-propagated gradients for the Prediction Error Method which enables efficient and accurate identification of large systems. The PEM approach consists of directly integrating state estimation into a dual-optimization objective, leaving a differentiable cost/error function only in terms of the unknown system parameters, which we solve using numerical gradient/Hessian methods. Intuitively, this approach consists of solving for the parameters that generate the most accurate state estimator (Extended/Cubature Kalman Filter). We demonstrate that this approach is at least as accurate in state and parameter estimation as joint Kalman Filters (Extended/Unscented/Cubature) and Expectation-Maximization, despite lower complexity. We demonstrate the utility of our approach by inverting anatomically-detailed individualized brain models from human magnetoencephalography (MEG) data.  more » « less
Award ID(s):
1835209 1653589
PAR ID:
10394353
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2022 American Control Conference (ACC)
Page Range / eLocation ID:
1353 to 1358
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Uwe Sauer, Dirk (Ed.)
    A B S T R A C T This paper proposes a model for parameter estimation of Vanadium Redox Flow Battery based on both the electrochemical model and the Equivalent Circuit Model. The equivalent circuit elements are found by a newly proposed optimization to minimized the error between the Thevenin and KVL-based impedance of the equivalent circuit. In contrast to most previously proposed circuit models, which are only introduced for constant current charging, the proposed method is applicable for all charging procedures, i.e., constant current, constant voltage, and constant current-constant voltage charging procedures. The proposed model is verified on a nine-cell VRFB stack by a sample constant current-constant voltage charging. As observed, in constant current charging mode, the terminal voltage model matches the measured data closely with low deviation; however, the terminal voltage model shows discrepancies with the measured data of VRFB in constant voltage charging. To improve the proposed circuit model’s discrepancies in constant voltage mode, two Kalman filters, i.e., hybrid extended Kalman filter and particle filter estimation algorithms, are used in this study. The results show the accuracy of the proposed equivalent with an average deviation of 0.88% for terminal voltage model estimation by the extended KF-based method and the average deviation of 0.79% for the particle filter-based estimation method, while the initial equivalent circuit has an error of 7.21%. Further, the proposed procedure extended to estimate the state of charge of the battery. The results show an average deviation of 4.2% in estimating the battery state of charge using the PF method and 4.4% using the hybrid extended KF method, while the electrochemical SoC estimation method is taken as the reference. These two Kalman Filter based methods are more accurate compared to the average deviation of state of charge using the Coulomb counting method, which is 7.4%. 
    more » « less
  2. Estimating and quantifying uncertainty in unknown system parameters from limited data remains a challenging inverse problem in a variety of real-world applications. While many approaches focus on estimating constant parameters, a subset of these problems includes time-varying parameters with unknown evolution models that often cannot be directly observed. This work develops a systematic particle filtering approach that reframes the idea behind artificial parameter evolution to estimate time-varying parameters in nonstationary inverse problems arising from deterministic dynamical systems. Focusing on systems modeled by ordinary differential equations, we present two particle filter algorithms for time-varying parameter estimation: one that relies on a fixed value for the noise variance of a parameter random walk; another that employs online estimation of the parameter evolution noise variance along with the time-varying parameter of interest. Several computed examples demonstrate the capability of the proposed algorithms in estimating time-varying parameters with different underlying functional forms and different relationships with the system states (i.e. additive vs. multiplicative). 
    more » « less
  3. Abstract Many real-world systems modeled using differential equations involve unknown or uncertain parameters. Standard approaches to address parameter estimation inverse problems in this setting typically focus on estimating constants; yet some unobservable system parameters may vary with time without known evolution models. In this work, we propose a novel approximation method inspired by the Fourier series to estimate time-varying parameters in deterministic dynamical systems modeled with ordinary differential equations. Using ensemble Kalman filtering in conjunction with Fourier series-based approximation models, we detail two possible implementation schemes for sequentially updating the time-varying parameter estimates given noisy observations of the system states. We demonstrate the capabilities of the proposed approach in estimating periodic parameters, both when the period is known and unknown, as well as non-periodic time-varying parameters of different forms with several computed examples using a forced harmonic oscillator. Results emphasize the importance of the frequencies and number of approximation model terms on the time-varying parameter estimates and corresponding dynamical system predictions. 
    more » « less
  4. Optimal power management of battery energy storage systems (BESS) is crucial for their safe and efficient operation. Numerical optimization techniques are frequently utilized to solve the optimal power management problems. However, these techniques often fall short of delivering real-time solutions for large-scale BESS due to their computational complexity. To address this issue, this paper proposes a computationally efficient approach. We introduce a new set of decision variables called power-sharing ratios corresponding to each cell, indicating their allocated power share from the output power demand. We then formulate an optimal power management problem to minimize the system-wide power losses while ensuring compliance with safety, balancing, and power supply-demand match constraints. To efficiently solve this problem, a parameterized control policy is designed and leveraged to transform the optimal power management problem into a parameter estimation problem. We then implement the ensemble Kalman inversion to estimate the optimal parameter set. The proposed approach significantly reduces computational requirements due to 1) the much lower dimensionality of the decision parameters and 2) the estimation treatment of the optimal power management problem. Finally, we conduct extensive simulations to validate the effectiveness of the proposed approach. The results show promise in accuracy and computation time compared with explored numerical optimization techniques. 
    more » « less
  5. To perform power system monitoring and control using synchrophasor measurements, various dynamic state estimators have been proposed in the literature, including the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). However, they are unable to handle system model parameter errors and any type of outliers, precluding them from being adopted for power system real-time applications. In this paper, we develop a robust iterated extended Kalman filter based on the generalized maximum likelihood approach (termed GM-IEKF) for dynamic state estimation. The proposed GM-IEKF can effectively suppress observation and innovation outliers, which may be induced by model parameter gross errors and cyber attacks. We assess its robustness by carrying out extensive simulations on the IEEE 39-bus test system. From the results, we find that the GM-IEKF is able to cope with at least 25% outliers, including in position of leverage. 
    more » « less