Percutaneous nephrostomy (PCN) is a minimally invasive procedure used in kidney surgery. PCN needle placement is of great importance for the following successful renal surgery. In this study, we designed and built an endoscopic polarization-sensitive optical coherence tomography (PS-OCT) system for the PCN needle guidance. Compared to traditional OCT, PS-OCT will allow more accurate differentiation of the renal tissue types in front of the needle. In the experiment, we imaged different renal tissues from human kidneys using the PS-OCT endoscope. Furthermore, deep learning methods were applied for automatic recognition of different tissue types.
more »
« less
Endoscopy Lifetime Systems Architecture: Scoping Out the Past to Diagnose the Future Technology
Systems engineering captures the desires and needs of the customer to conceptualize a system from the overall goal down to the small details prior to any physical development. While many systems projects tend to be large and complicated (i.e., cloud-based infrastructure, long-term space travel shuttles, missile defense systems), systems engineering can also be applied to smaller, complex systems. Here, the system of interest is the endoscope, a standard biomedical screening device used in laparoscopic surgery, screening of upper and lower gastrointestinal tracts, and inspection of the upper airway. Often, endoscopic inspection is used to identify pre-cancerous and cancerous tissues, and hence, a requirement for endoscopic systems is the ability to provide images with high contrast between areas of normal tissue and neoplasia (early-stage abnormal tissue growth). For this manuscript, the endoscope was reviewed for all the technological advancements thus far to theorize what the next version of the system could be in order to provide improved detection capabilities. Endoscopic technology was decomposed into categories, using systems architecture and systems thinking, to visualize the improvements throughout the system’s lifetime from the original to current state-of-the-art. Results from this review were used to identify trends in subsystems and components to estimate the theoretical performance maxima for different subsystems as well as areas for further development. The subsystem analysis indicated that future endoscope systems will focus on more complex imaging and higher computational requirements that will provide improved contrast in order to have higher accuracy in optical diagnoses of early, abnormal tissue growth.
more »
« less
- Award ID(s):
- 1725937
- PAR ID:
- 10379078
- Date Published:
- Journal Name:
- Systems
- Volume:
- 10
- Issue:
- 5
- ISSN:
- 2079-8954
- Page Range / eLocation ID:
- 189
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents an approach to enhanced endoscopic tool segmentation combining separate pathways utilizing input images in two different coordinate representations. The proposed method examines U-Net convolutional neural networks with input endoscopic images represented via (1) the original rectangular coordinate format alongside (2) a morphological polar coordinate transformation. To maximize information and the breadth of the endoscope frustrum, imaging sensors are oftentimes larger than the image circle. This results in unused border regions. Ideally, the region of interest is proximal to the image center. The above two observations formed the basis for the morphological polar transformation pathway as an augmentation to typical rectangular input image representations. Results indicate that neither of the two investigated coordinate representations consistently yielded better segmentation performance as compared to the other. Improved segmentation can be achieved with a hybrid approach that carefully selects which of the two pathways to be used for individual input images. Towards that end, two binary classifiers were trained to identify, given an input endoscopic image, which of the two coordinate representation segmentation pathways (rectangular or polar), would result in better segmentation performance. Results are promising and suggest marked improvements using a hybrid pathway selection approach compared to either alone. The experiment used to evaluate the proposed hybrid method utilized a dataset consisting of 8360 endoscopic images from real surgery and evaluated segmentation performance with Dice coefficient and Intersection over Union. The results suggest that on-the-fly polar transformation for tool segmentation is useful when paired with the proposed hybrid tool-segmentation approach.more » « less
-
Positive outcomes for colorectal cancer treatment have been linked to early detection. The difficulty in detecting early lesions is the limited contrast with surrounding mucosa and minimal definitive markers to distinguish between hyperplastic and carcinoma lesions. Colorectal cancer is the 3rd leading cancer for incidence and mortality rates which is potentially linked to missed early lesions which allow for increased growth and metastatic potential. One potential technology for early-stage lesion detection is hyperspectral imaging. Traditionally, hyperspectral imaging uses reflectance spectroscopic data to provide a component analysis, per pixel, of an image in fields such as remote sensing, agriculture, food processing and archaeology. This work aims to acquire higher signal-to-noise fluorescence spectroscopic data, harnessing the autofluorescence of tissue, adding a hyperspectral contrast to colorectal cancer detection while maintaining spatial resolution at video-rate speeds. We have previously designed a multi-furcated LED-based spectral light source to prove this concept. Our results demonstrated that the technique is feasible, but the initial prototype has a high light transmission loss (~98%) minimizing spatial resolution and slowing video acquisition. Here, we present updated results in developing an optical ray-tracing model of light source geometries to maximize irradiance throughput for excitation-scanning hyperspectral imaging. Results show combining solid light guide branches have a compounding light loss effect, however, there is potential to minimize light loss through the use of optical claddings. This simulation data will provide the necessary metrics to verify and validate future physical optical components within the hyperspectral endoscopic system for detecting colorectal cancer.more » « less
-
Abstract Aerobic methanotrophic bacteria are the primary organisms that consume atmospheric methane (CH4) and have potential to mitigate the climate-active gas. However, a limited understanding of the genetic determinants of methanotrophy hinders the development of biotechnologies leveraging these unique microbes. Here, we developed and optimized a methanotroph CRISPR interference (CRISPRi) system to enable functional genomic screening. We built a genome-wide single guide RNA (sgRNA) library in the industrial methanotroph,Methylococcus capsulatus, consisting of ∼45,000 unique sgRNAs mediating inducible, CRISPRi-dependent transcriptional repression. A selective screen during growth on CH4identified 233 genes whose transcription repression resulted in a fitness defect and repression of 13 genes associated with a fitness advantage. Enrichment analysis of the 233 putative essential genes linked many of the encoded proteins with critical cellular processes like ribosome biosynthesis, translation, transcription, and other central biosynthetic metabolism, highlighting the utility of CRISPRi for functional genetic screening in methanotrophs, including the identification of novel essential genes.M. capsulatusgrowth was inhibited when the CRISPRi system was used to individually target genes identified in the screen, validating their essentiality for methanotrophic growth. Collectively, our results show that the CRISPRi system and sgRNA library developed here can be used for facile gene-function analyses and genomic screening to identify novel genetic determinants of methanotrophy. These CRISPRi screening methodologies can also be applied to high-throughput engineering approaches for isolation of improved methanotroph biocatalysts.more » « less
-
We present a principal-agent model of a one-shot, shallow, systems engineering process. The process is "one-shot" in the sense that decisions are made during a one-time step and that they are final. The term "shallow" refers to a one-layer hierarchy of the process. Specifically, we assume that the systems engineer has already decomposed the problem in subsystems and that each subsystem is assigned to a different subsystem engineer. Each subsystem engineer works independently to maximize their own expected payoff. The goal of the systems engineer is to maximize the system-level payoff by incentivizing the subsystem engineers. We restrict our attention to requirements-based system-level payoffs, i.e., the systems engineer makes a profit only if all the design requirements are met. We illustrate the model using the design of an Earth-orbiting satellite system where the systems engineer determines the optimum incentive structures and requirements for two subsystems: the propulsion subsystem and the power subsystem. The model enables the analysis of a systems engineer's decisions about optimal passed-down requirements and incentives for sub-system engineers under different levels of task difficulty and associated costs. Sample results, for the case of risk-neutral systems and subsystems engineers, show that it is not always in the best interest of the systems engineer to pass down the true requirements. As expected, the model predicts that for small to moderate task uncertainties the optimal requirements are higher than the true ones, effectively eliminating the probability of failure for the systems engineer. In contrast, the model predicts that for large task uncertainties the optimal requirements should be smaller than the true ones in order to lure the subsystem engineers into participation.more » « less
An official website of the United States government

