Autonomous mobile robots (AMRs) have been widely utilized in industry to execute various on-board computer-vision applications including autonomous guidance, security patrol, object detection, and face recognition. Most of the applications executed by an AMR involve the analysis of camera images through trained machine learning models. Many research studies on machine learning focus either on performance without considering energy efficiency or on techniques such as pruning and compression to make the model more energy-efficient. However, most previous work do not study the root causes of energy inefficiency for the execution of those applications on AMRs. The computing stack on an AMR accounts for 33% of the total energy consumption and can thus highly impact the battery life of the robot. Because recharging an AMR may disrupt the application execution, it is important to efficiently utilize the available energy for maximized battery life. In this paper, we first analyze the breakdown of power dissipation for the execution of computer-vision applications on AMRs and discover three main root causes of energy inefficiency: uncoordinated access to sensor data, performance-oriented model inference execution, and uncoordinated execution of concurrent jobs. In order to fix these three inefficiencies, we propose E2M, an energy-efficient middleware software stack formore »
Towards High-Quality Battery Life for Autonomous Mobile Robot Fleets
Autonomous Mobile Robots (AMRs) rely on rechargeable batteries to execute several objective tasks during navigation. Previous research has focused on minimizing task downtime by coordinating task allocation and/or charge scheduling across multiple AMRs. However, they do not jointly ensure low task downtime and high-quality battery life.In this paper, we present TCM, a Task allocation and Charging Manager for AMR fleets. TCM allocates objective tasks to AMRs and schedules their charging times at the available charging stations for minimized task downtime and maximized AMR batteries’ quality of life. We formulate the TCM problem as an MINLP problem and propose a polynomial-time multi-period TCM greedy algorithm that periodically adapts its decisions for high robustness to energy modeling errors. We experimentally show that, compared to the MINLP implementation in Gurobi solver, the designed algorithm provides solutions with a performance ratio of 1.15 at a fraction of the execution time. Furthermore, compared to representative baselines that only focus on task downtime, TCM achieves similar task allocation results while providing much higher battery quality of life.
- Award ID(s):
- 1948365
- Publication Date:
- NSF-PAR ID:
- 10379472
- Journal Name:
- 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)
- Page Range or eLocation-ID:
- 61 to 70
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background Mobile health technology has demonstrated the ability of smartphone apps and sensors to collect data pertaining to patient activity, behavior, and cognition. It also offers the opportunity to understand how everyday passive mobile metrics such as battery life and screen time relate to mental health outcomes through continuous sensing. Impulsivity is an underlying factor in numerous physical and mental health problems. However, few studies have been designed to help us understand how mobile sensors and self-report data can improve our understanding of impulsive behavior. Objective The objective of this study was to explore the feasibility of using mobile sensor data to detect and monitor self-reported state impulsivity and impulsive behavior passively via a cross-platform mobile sensing application. Methods We enrolled 26 participants who were part of a larger study of impulsivity to take part in a real-world, continuous mobile sensing study over 21 days on both Apple operating system (iOS) and Android platforms. The mobile sensing system (mPulse) collected data from call logs, battery charging, and screen checking. To validate the model, we used mobile sensing features to predict common self-reported impulsivity traits, objective mobile behavioral and cognitive measures, and ecological momentary assessment (EMA) of state impulsivity and constructsmore »
-
We consider a large-scale service system where incoming tasks have to be instantaneously dispatched to one out of many parallel server pools. The user-perceived performance degrades with the number of concurrent tasks and the dispatcher aims at maximizing the overall quality of service by balancing the load through a simple threshold policy. We demonstrate that such a policy is optimal on the fluid and diffusion scales, while only involving a small communication overhead, which is crucial for large-scale deployments. In order to set the threshold optimally, it is important, however, to learn the load of the system, which may be unknown. For that purpose, we design a control rule for tuning the threshold in an online manner. We derive conditions that guarantee that this adaptive threshold settles at the optimal value, along with estimates for the time until this happens. In addition, we provide numerical experiments that support the theoretical results and further indicate that our policy copes effectively with time-varying demand patterns. Summary of Contribution: Data centers and cloud computing platforms are the digital factories of the world, and managing resources and workloads in these systems involves operations research challenges of an unprecedented scale. Due to the massive size,more »
-
The Lithium-ion battery (Li-ion) has become the dominant energy storage solution in many applications, such as hybrid electric and electric vehicles, due to its higher energy density and longer life cycle. For these applications, the battery should perform reliably and pose no safety threats. However, the performance of Li-ion batteries can be affected by abnormal thermal behaviors, defined as faults. It is essential to develop a reliable thermal management system to accurately predict and monitor thermal behavior of a Li-ion battery. Using the first-principle models of batteries, this work presents a stochastic fault detection and diagnosis (FDD) algorithm to identify two particular faults in Li-ion battery cells, using easily measured quantities such as temperatures. In addition, models used for FDD are typically derived from the underlying physical phenomena. To make a model tractable and useful, it is common to make simplifications during the development of the model, which may consequently introduce a mismatch between models and battery cells. Further, FDD algorithms can be affected by uncertainty, which may originate from either intrinsic time varying phenomena or model calibration with noisy data. A two-step FDD algorithm is developed in this work to correct a model of Li-ion battery cells and tomore »
-
Edge computing allows end-user devices to offload heavy computation to nearby edge servers for reduced latency, maximized profit, and/or minimized energy consumption. Data-dependent tasks that analyze locally-acquired sensing data are one of the most common candidates for task offloading in edge computing. As a result, the total latency and network load are affected by the total amount of data transferred from end-user devices to the selected edge servers. Most existing solutions for task allocation in edge computing do not take into consideration that some user tasks may actually operate on the same data items. Making the task allocation algorithm aware of the existing data sharing characteristics of tasks can help reduce network load at a negligible profit loss by allocating more tasks sharing data on the same server. In this paper, we formulate the data sharing-aware task allocation problem that make decisions on task allocation for maximized profit and minimized network load by taking into account the data-sharing characteristics of tasks. In addition, because the problem is NP-hard, we design the DSTA algorithm, which finds a solution to the problem in polynomial time. We analyze the performance of the proposed algorithm against a state-of-the-art baseline that only maximizes profit. Ourmore »