skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nickel‐Catalyzed Cross‐Redistribution between Hydrosilanes and Silacyclobutanes
Abstract Silanes are important in chemistry and material science. The self‐redistribution of HSiCl3is an industrial process to prepare SiH4, which is widely used in electronics and automobile industries. However, selective silane cross‐redistribution to prepare advanced silanes is challenging. We now report an enthalpy‐driven silane cross‐redistribution to access bis‐silanes that contain two different types of Si−H bonds in the same molecule. Compared with entropy‐driven reactions, the enthalpy‐driven reaction shows high regioselectivity, broad substrate scope (62 examples) and high atom economy. Our combined experimental and computational study indicates that the reaction proceeds through a Ni0‐NiII‐NiIVcatalytic cycle.  more » « less
Award ID(s):
1764328 2153972
PAR ID:
10379754
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
50
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Diaryl difluoromethanes are valuable targets for medicinal chemistry because they are bioisosteres of diaryl ethers and can function as replacements for diaryl methane, ketone, and sulfone groups. However, methods to prepare diaryl difluoromethanes are scarce, especially methods starting from abundant aryl halides. We report the Pd‐catalyzed aryldifluoromethylation of aryl halides with aryldifluoromethyl trimethylsilanes (TMSCF2Ar). The reaction occurs when the catalyst contains a simple, but unusual, dialkylaryl phosphine ligand that promotes transmetallation of the silane. Computational studies show that reductive elimination following transmetallation occurs with a low barrier, despite the fluorine atoms on the α‐carbon, due to coordination of the difluorobenzyl π‐system to palladium. The co‐development of a cobalt‐catalyzed synthesis of the silanes broadened the scope of the process including several applications to the synthesis biologically relevant diaryl difluoromethanes. 
    more » « less
  2. Abstract Pincer‐type nickel–aluminum complexes were synthesized using two equivalents of the phosphinoamide, [PhNCH2PiPr2]. The Ni0–AlIIIcomplexes, {(MesPAlP)Ni}2(μ‐N2) and {(MesPAlP)Ni}2(μ‐COD), whereMesPAlP is (Mes)Al(NPhCH2PiPr2)2, were structurally characterized. The (PAlP)Ni system exhibited cooperative bond cleavage mediated by the two‐site Ni–Al unit, including oxidative addition of aryl halides, H2activation, and ortho‐directed C−H bond activation of pyridine N‐oxide. One intriguing reaction is the reversible intramolecular transfer of the mesityl ring from the Al to the Ni site, which is evocative of the transmetalation step during cross‐coupling catalysis. The aryl‐transfer product,(THF)Al(NPhCH2PiPr2)2Ni(Mes), is the first example of a first‐row transition metal–aluminyl pincer complex. The addition of a judicious donor enables the Al metalloligand to convert reversibly between the alane and aluminyl forms via aryl group transfer to and from Ni, respectively. Theoretical calculations support a zwitterionic Niδ−–Alδ+electronic structure in the nickel–aluminyl complex. 
    more » « less
  3. Abstract The synthesis and characterization of (tBuPBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni−C bond of (tBuPBP)NiMe (1) is presented. An unexpected CO2cleavage process involving the formation of new B−O and Ni−CO bonds leads to the generation of a butterfly‐structured tetra‐nickel cluster (tBuPBOP)2Ni4(μ‐CO)2(6). Mechanistic investigation of this reaction indicates a reductive scission of CO2by O‐atom transfer to the boron atom via a cooperative nickel‐boron mechanism. The CO2activation reaction produces a three‐coordinate (tBuP2BO)Ni‐acyl intermediate (A) that leads to a (tBuP2BO)−NiIcomplex (B) via a likely radical pathway. The NiIspecies is trapped by treatment with the radical trap (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) to give (tBuP2BO)NiII2‐TEMPO) (7). Additionally,13C and1H NMR spectroscopy analysis using13C‐enriched CO2provides information about the species involved in the CO2activation process. 
    more » « less
  4. Abstract The incorporation of CO2into organometallic and organic molecules represents a sustainable way to prepare carboxylates. The mechanism of reductive carboxylation of alkyl halides has been proposed to proceed through the reduction of NiIIto NiIby either Zn or Mn, followed by CO2insertion into NiI‐alkyl species. No experimental evidence has been previously established to support the two proposed steps. Demonstrated herein is that the direct reduction of (tBu‐Xantphos)NiIIBr2by Zn affords NiIspecies. (tBu‐Xantphos)NiI‐Me and (tBu‐Xantphos)NiI‐Et complexes undergo fast insertion of CO2at 22 °C. The substantially faster rate, relative to that of NiIIcomplexes, serves as the long‐sought‐after experimental support for the proposed mechanisms of Ni‐catalyzed carboxylation reactions. 
    more » « less
  5. Fundamental studies are needed to advance our understanding of selective adsorption in aqueous environments and develop more effective sorbents and filters for water treatment. Vapor-phase grafting of functional silanes is an effective method to prepare well-defined surfaces to study selective adsorption. In this investigation, we perform vapor phase grafting of five different silane compounds on aluminum oxide (Al2O3) surfaces prepared by atomic layer deposition. These silane compounds have the general formula L3Si–C3H6–X where the ligand, L, controls the reactivity with the hydroxylated Al2O3 surface and the functional moiety, X, dictates the surface properties of the grafted layer. We study the grafting process using in situ Fourier transform infrared spectroscopy and ex situ x-ray photoelectron spectroscopy measurements, and we characterize the surfaces using scanning electron microscopy, atomic force microscopy, and water contact angle measurements. We found that the structure and density of grafted aminosilanes are influenced by their chemical reactivity and steric constraints around the silicon atom as well as by the nature of the anchoring functional groups. Methyl substituted aminosilanes yielded more hydrophobic surfaces with a higher surface density at higher grafting temperatures. Thiol and nitrile terminated silanes were also studied and compared to the aminosilane terminated surfaces. Uniform monolayer coatings were observed for ethoxy-based silanes, but chlorosilanes exhibited nonuniform coatings as verified by atomic force microscopy measurements. 
    more » « less