skip to main content


Title: Unleashing nanofabrication through thermomechanical nanomolding
Advancements in nanotechnology require the development of nanofabrication methods for a wide range of materials, length scales, and elemental distributions. Today’s nanofabrication methods are typically missing at least one demanded characteristic. Hence, a general method enabling versatile nanofabrication remains elusive. Here, we show that, when revealing and using the underlying mechanisms of thermomechanical nanomolding, a highly versatile nanofabrication toolbox is the result. Specifically, we reveal interface diffusion and dislocation slip as the controlling mechanisms and use their transition to control, combine, and predict the ability to fabricate general materials, material combinations, and length scales. Designing specific elemental distributions is based on the relative diffusivities, the transition temperature, and the distribution of the materials in the feedstock. The mechanistic origins of thermomechanical nanomolding and their homologous temperature-dependent transition suggest a versatile toolbox capable of combining many materials in nanostructures and potentially producing any material in moldable shapes on the nanoscale.  more » « less
Award ID(s):
1901613
NSF-PAR ID:
10379902
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
47
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Ice sheets lose the majority of their mass through outlet glaciers or ice streams, corridors of fast ice moving multiple orders of magnitude more rapidly than the surrounding ice. The future stability of these corridors of fast-moving ice depends sensitively on the behaviour of their boundaries, namely shear margins, grounding zones and the basal sliding interface, where the stress field is complex and fundamentally three-dimensional. These boundaries are prone to thermomechanical localisation, which can be captured numerically only with high temporal and spatial resolution. Thus, better understanding the coupled physical processes that govern the response of these boundaries to climate change necessitates a non-linear, full Stokes model that affords high resolution and scales well in three dimensions. This paper's goal is to contribute to the growing toolbox for modelling thermomechanical deformation in ice by leveraging graphical processing unit (GPU) accelerators' parallel scalability. We propose FastICE, a numerical model that relies on pseudo-transient iterations to solve the implicit thermomechanical coupling between ice motion and temperature involving shear heating and a temperature-dependent ice viscosity. FastICE is based on the finite-difference discretisation, and we implement the pseudo-time integration in a matrix-free way. We benchmark the mechanical Stokes solver against the finite-element code Elmer/Ice and report good agreement among the results. We showcase a parallel version of FastICE to run on GPU-accelerated distributed memory machines, reaching a parallel efficiency of 99 %. We show that our model is particularly useful for improving our process-based understanding of flow localisation in the complex transition zones bounding rapidly moving ice. 
    more » « less
  2. Abstract

    With shrinking dimensions in integrated circuits, sensors, and functional devices, there is a pressing need to develop nanofabrication techniques with simultaneous control of morphology, microstructure, and material composition over wafer length scales. Current techniques are largely unable to meet all these conditions, suffering from poor control of morphology and defect structure or requiring extensive optimization or post‐processing to achieve desired nanostructures. Recently, thermomechanical nanomolding (TMNM) has been shown to yield single‐crystalline, high aspect ratio nanowires of metals, alloys, and intermetallics over wafer‐scale distances. Here, TMNM is extended for wafer‐scale fabrication of 2D nanostructures. Using In, Al, and Cu, nanomold nanoribbons with widths < 50 nm, depths ≈0.5–1 µm and lengths ≈7 mm into Si trenches at conditions compatible is successfully with back end of line processing . Through SEM cross‐section imaging and 4D‐STEM grain orientation maps, it is shown that the grain size of the bulk feedstock is transferred to the nanomolded structures up to and including single crystal Cu. Based on the retained microstructures of molded 2D Cu, the deformation mechanism during molding for 2D TMNM is discussed.

     
    more » « less
  3. Colloidal nanocrystals (NCs) have emerged as a diverse class of materials with tunable composition, size, shape, and surface chemistry. From their facile syntheses to unique optoelectronic properties, these solution-processed nanomaterials are a promising alternative to materials grown as bulk crystals or by vapor-phase methods. However, the integration of colloidal nanomaterials in real-world devices is held back by challenges in making patterned NC films with the resolution, throughput, and cost demanded by device components and applications. Therefore, suitable approaches to pattern NCs need to be established to aid the transition from individual proof-of-concept NC devices to integrated and multiplexed technological systems. In this Account, we discuss the development of stimuli-sensitive surface ligands that enable NCs to be patterned directly with good pattern fidelity while retaining desirable properties. We focus on rationally selected ligands that enable changes in the NC dispersibility by responding to light, electron beam, and/or heat. First, we summarize the fundamental forces between colloidal NCs and discuss the principles behind NC stabilization/destabilization. These principles are applied to understanding the mechanisms of the NC dispersibility change upon stimuli-induced ligand modifications. Six ligand-based patterning mechanisms are introduced: ligand cross-linking, ligand decomposition, ligand desorption, in situ ligand exchange, ion/ligand binding, and ligand-aided increase of ionic strength. We discuss examples of stimuli-sensitive ligands that fall under each mechanism, including their chemical transformations, and address how these ligands are used to pattern either sterically or electrostatically stabilized colloidal NCs. Following that, we explain the rationale behind the exploration of different types of stimuli, as well as the advantages and disadvantages of each stimulus. We then discuss relevant figures-of-merit that should be considered when choosing a particular ligand chemistry or stimulus for patterning NCs. These figures-of-merit pertain to either the pattern quality (e.g., resolution, edge and surface roughness, layer thickness), or to the NC material quality (e.g., photo/electro-luminescence, electrical conductivity, inorganic fraction). We outline the importance of these properties and provide insights on optimizing them. Both the pattern quality and NC quality impact the performance of patterned NC devices such as field-effect transistors, light-emitting diodes, color-conversion pixels, photodetectors, and diffractive optical elements. We also give examples of proof-of-concept patterned NC devices and evaluate their performance. Finally, we provide an outlook on further expanding the chemistry of stimuli-sensitive ligands, improving the NC pattern quality, progress toward 3D printing, and other potential research directions. Ultimately, we hope that the development of a patterning toolbox for NCs will expedite their implementation in a broad range of applications. 
    more » « less
  4. Abstract

    The production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the creation of high‐performance sulfur based plastics with improved thermomechanical properties, elasticity and flame retardancy. We report on a synthetic polymerization methodology to prepare the first example of sulfur based segmented multi‐block polyurethanes (SPUs) and thermoplastic elastomers that incorporate an appreciable amount of sulfur into the final target material. This approach applied both the inverse vulcanization of S8with olefinic alcohols and dynamic covalent polymerizations with dienes to prepare sulfur polyols and terpolyols that were used in polymerizations with aromatic diisocyanates and short chain diols. Using these methods, a new class of high molecular weight, soluble block copolymer polyurethanes were prepared as confirmed by Size Exclusion Chromatography, NMR spectroscopy, thermal analysis, and microscopic imaging. These sulfur‐based polyurethanes were readily solution processed into large area free standing films where both the tensile strength and elasticity of these materials were controlled by variation of the sulfur polyol composition. SPUs with both high tensile strength (13–24 MPa) and ductility (348 % strain at break) were prepared, along with SPU thermoplastic elastomers (578 % strain at break) which are comparable values to classical thermoplastic polyurethanes (TPUs). The incorporation of sulfur into these polyurethanes enhanced flame retardancy in comparison to classical TPUs, which points to the opportunity to impart new properties to polymeric materials as a consequence of using elemental sulfur.

     
    more » « less
  5. Abstract

    The production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the creation of high‐performance sulfur based plastics with improved thermomechanical properties, elasticity and flame retardancy. We report on a synthetic polymerization methodology to prepare the first example of sulfur based segmented multi‐block polyurethanes (SPUs) and thermoplastic elastomers that incorporate an appreciable amount of sulfur into the final target material. This approach applied both the inverse vulcanization of S8with olefinic alcohols and dynamic covalent polymerizations with dienes to prepare sulfur polyols and terpolyols that were used in polymerizations with aromatic diisocyanates and short chain diols. Using these methods, a new class of high molecular weight, soluble block copolymer polyurethanes were prepared as confirmed by Size Exclusion Chromatography, NMR spectroscopy, thermal analysis, and microscopic imaging. These sulfur‐based polyurethanes were readily solution processed into large area free standing films where both the tensile strength and elasticity of these materials were controlled by variation of the sulfur polyol composition. SPUs with both high tensile strength (13–24 MPa) and ductility (348 % strain at break) were prepared, along with SPU thermoplastic elastomers (578 % strain at break) which are comparable values to classical thermoplastic polyurethanes (TPUs). The incorporation of sulfur into these polyurethanes enhanced flame retardancy in comparison to classical TPUs, which points to the opportunity to impart new properties to polymeric materials as a consequence of using elemental sulfur.

     
    more » « less