skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A novel nonperturbative renormalization scheme for local operators
The gradient flow exponentially suppresses ultraviolet field fluctuations and removes ultraviolet divergences (up to a multiplicative fermionic wavefunction renormalization). It can be used to describe real-space Wilsonian renormalization group transformations and determine the corresponding beta function. We propose a new nonperturbative renormalization scheme for local composite fermionic operators that uses the gradient flow and is amenable to lattice QCD calculations. We present preliminary nonperturbative results for the running of quark bilinear operators in this scheme and outline the calculation of perturbative matching to the MS-bar scheme.  more » « less
Award ID(s):
1913287
PAR ID:
10379966
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The 38th International Symposium on Lattice Field Theory (LATTICE2021)
Volume:
396
Page Range / eLocation ID:
155
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract Different decompositions of the nucleon mass, in terms of the masses and energies of the underlying constituents, have been proposed in the literature. We explore the corresponding sum rules in quantum electrodynamics for an electron at one-loop order in perturbation theory. To this aim we compute the form factors of the energy-momentum tensor, by paying particular attention to the renormalization of ultraviolet divergences, operator mixing and scheme dependence. We clarify the expressions of all the proposed sum rules in the electron rest frame in terms of renormalized operators. Furthermore, we consider the same sum rules in a moving frame, where they become energy decompositions. Finally, we discuss some implications of our study on the mass sum rules for the nucleon. 
    more » « less
  2. A bstract The quark chromoelectric dipole (qCEDM) operator is a CP-violating operator describing, at hadronic energies, beyond-the-standard-model contributions to the electric dipole moment of particles with nonzero spin. In this paper we define renormalized dipole operators in a regularization-independent scheme using the gradient flow, and we perform the matching at one loop in perturbation theory to renormalized operators of the same and lower dimension in the more familiar MS scheme. We also determine the matching coefficients for the quark chromo-magnetic dipole operator (qCMDM), which contributes for example to matrix elements relevant to CP-violating and CP-conserving kaon decays. The calculation provides a basis for future lattice QCD computations of hadronic matrix elements of the qCEDM and qCMDM operators. 
    more » « less
  3. Abstract In this article we review how categorical equivalences are realized by renormalization group flow in physical realizations of stacks, derived categories, and derived schemes. We begin by reviewing the physical realization of sigma models on stacks, as (universality classes of) gauged sigma models, and look in particular at properties of sigma models on gerbes (equivalently, sigma models with restrictions on nonperturbative sectors), and ‘decomposition,’ in which two‐dimensional sigma models on gerbes decompose into disjoint unions of ordinary theories. We also discuss stack structures on examples of moduli spaces of SCFTs, focusing on elliptic curves, and implications of subtleties there for string dualities in other dimensions. In the second part of this article, we review the physical realization of derived categories in terms of renormalization group flow (time evolution) of combinations of D‐branes, antibranes, and tachyons. In the third part of this article, we review how Landau–Ginzburg models provide a physical realization of derived schemes, and also outline an example of a derived structure on a moduli spaces of SCFTs. 
    more » « less
  4. Recently, there have been rapid developments in lattice-QCD calculations of proton structure, especially in the parton distribution functions (PDFs). We overcame a longstanding obstacle and for the first time in lattice-QCD are able to directly calculate the Bjorken- x dependence of the quark, helicity and transversity distributions. The PDFs are obtained using the large-momentum effective field theory (LaMET) framework where the full Bjorken- x dependence of finite-momentum PDFs, called “quasi-PDFs”, can be calculated on the lattice. The quasi-PDF nucleon matrix elements are renormalized non-perturbatively in RI/MOM-scheme. Following a nonperturbative renormalization of the parton quasi-distribution in a regularization-independent momentum-subtraction scheme, we establish its matching to the $$ \overline {{\rm{MS}}} $$ PDF and calculate the non-singlet matching coefficient at next-to-leading order in perturbation theory. In this proceeding, I will show the progress that has been made in recent years, highlighting the latest state-of-the art PDF calculations at the physical pion mass. Future impacts on the large- x global PDF fits are also discussed. 
    more » « less
  5. We present the first calculation of the pion gluon moment from lattice QCD in the continuum-physical limit. The calculation is done using clover fermions for the valence action with three pion masses, 220, 310 and 690 MeV, and three lattice spacings, 0.09, 0.12, and 0.15 fm, using ensembles generated by MILC Collaboration with 2 + 1 + 1 flavors of highly improved staggered quarks (HISQ). On the lattice, we nonperturbatively renormalize the gluon operator in RI/MOM scheme using the cluster-decomposition error reduction (CDER) technique to enhance the signal-to-noise ratio of the renormalization constant. We extrapolate the pion gluon moment to the continuum-physical limit and obtain x g = 0.394 ( 58 ) stat + NPR ( 39 ) mixing in the MS ¯ scheme at 2 GeV, with first error being the statistical error and uncertainties in nonperturbative renormalization, and the second being a systematic uncertainty estimating the effect of ignoring quark mixing. Our pion gluon momentum fraction has a central value lower than two recent single-ensemble lattice-QCD results near physical pion mass but is consistent with the recent global fits by JAM and xFitter and with most QCD-model estimates. Published by the American Physical Society2024 
    more » « less