Studying dynamic-functional connectivity (DFC) using fMRI data of the brain gives much richer information to neuroscientists than studying the brain as a static entity. Mining of dynamic connectivity graphs from these brain studies can be used to classify diseased versus healthy brains. However, constructing and mining dynamic-functional connectivity graphs of the brain can be time consuming due to size of fMRI data. In this paper, we propose a highly scalable GPU-based parallel algorithm called GPU-DFC for computing dynamic-functional connectivity of fMRI data both at region and voxel level. Our algorithm exploits sparsification of correlation matrix and stores them in CSR format. Further reduction in the correlation matrix is achieved by parallel decomposition techniques. Our GPU-DFC algorithm achieves 2 times speed-up for computing dynamic correlations compared to state-of-the-art GPU-based techniques and more than 40 times compared to a sequential CPU version. In terms of storage, our proposed matrix decomposition technique reduces the size of correlation matrices more than 100 times. Reconstructed values from decomposed matrices show comparable results as compared to the correlations with original data. The implemented code is available as GPL license on GitHub portal of our lab (https://github.com/pcdslab/GPU-DFC).
more »
« less
BrainIAK: The Brain Imaging Analysis Kit
Functional magnetic resonance imaging (fMRI) offers a rich source of data for studying the neural basis of cognition. Here, we describe the Brain Imaging Analysis Kit (BrainIAK), an open-source, free Python package that provides computationally optimized solutions to key problems in advanced fMRI analysis. A variety of techniques are presently included in BrainIAK: intersubject correlation (ISC) and intersubject functional connectivity (ISFC), functional alignment via the shared response model (SRM), full correlation matrix analysis (FCMA), a Bayesian version of representational similarity analysis (BRSA), event segmentation using hidden Markov models, topographic factor analysis (TFA), inverted encoding models (IEMs), an fMRI data simulator that uses noise characteristics from real data (fmrisim), and some emerging methods. These techniques have been optimized to leverage the efficiencies of high-performance compute (HPC) clusters, and the same code can be seamlessly transferred from a laptop to a cluster. For each of the aforementioned techniques, we describe the data analysis problem that the technique is meant to solve and how it solves that problem; we also include an example Jupyter notebook for each technique and an annotated bibliography of papers that have used and/or described that technique. In addition to the sections describing various analysis techniques in BrainIAK, we have included sections describing the future applications of BrainIAK to real-time fMRI, tutorials that we have developed and shared online to facilitate learning the techniques in BrainIAK, computational innovations in BrainIAK, and how to contribute to BrainIAK. We hope that this manuscript helps readers to understand how BrainIAK might be useful in their research.
more »
« less
- Award ID(s):
- 1919452
- PAR ID:
- 10380245
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Aperture Neuro
- Volume:
- 2021
- Issue:
- 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Heterogeneity in brain activity can give rise to heterogeneity in behavior, which in turn comprises our distinctive characteristics as individuals. Studying the path from brain to behavior, however, often requires making assumptions about how similarity in behavior scales with similarity in brain activity. Here, we expand upon recent work (Finn et al., 2020) which proposes a theoretical framework for testing the validity of such assumptions. Using intersubject representational similarity analysis in two independent movie-watching functional MRI (fMRI) datasets, we probe how brain-behavior relationships vary as a function of behavioral domain and participant sample. We find evidence that, in some cases, the neural similarity of two individuals is not correlated with behavioral similarity. Rather, individuals with higher behavioral scores are more similar to other high scorers whereas individuals with lower behavioral scores are dissimilar from everyone else. Ultimately, our findings motivate a more extensive investigation of both the structure of brain-behavior relationships and the tacit assumption that people who behave similarly will demonstrate shared patterns of brain activity.more » « less
-
After decades of research, there is still no comprehensive, validated model of program comprehension. Recently, researchers have been applying psycho-physiological measures to expand our understanding of program comprehension. In this position paper, we argue that measuring program comprehension simultaneously with functional magnetic resonance imaging (fMRI) and eye tracking is promising. However, due to the different nature of both measures in terms of response delay and temporal resolution, we need to develop suitable tools. We describe the challenges of conjoint analysis of fMRI and eye-tracking data, and we also outline possible solution strategies.more » « less
-
Functional magnetic resonance imaging (fMRI) functional connectivity between brain regions is often computed using parcellations defined by functional or structural atlases. Typically, some kind of voxel averaging is performed to obtain a single temporal correlation estimate per region pair. However, several estimators can be defined for this task, with various assumptions and degrees of robustness to local noise, global noise, and region size. In this paper, we systematically present and study the properties of 9 different functional connectivity estimators taking into account the spatial structure of fMRI data, based on a simple fMRI data spatial model. These include 3 existing estimators and 6 novel estimators. We demonstrate the empirical properties of the estimators using synthetic, animal, and human data, in terms of graph structure, repeatability and reproducibility, discriminability, dependence on region size, as well as local and global noise robustness. We prove analytically the link between regional intra-correlation and inter-region correlation, and show that the choice of estimator has a strong influence on inter-correlation values. Some estimators, including the commonly used correlation of averages (ca), are positively biased, and have more dependence to region size and intra-correlation than robust alternatives, resulting in spatially-dependent bias. We define the new local correlation of averages estimator with better theoretical guarantees, lower bias, significantly lower dependence on region size (Spearman correlation 0.40 vs 0.55, paired t-test T=27.2, 𝑝 = 1.1𝑒−47), at negligible cost to discriminative power, compared to the ca estimator. The difference in connectivity pattern between the estimators is not distributed uniformly throughout the brain, but rather shows a clear ventral-dorsal gradient, suggesting that region size and intra-correlation plays an important role in shaping functional networks defined using the ca estimator, and leading to non- trivial differences in their connectivity structure. We provide an open source R package and equivalent Python implementation to facilitate the use of the new estimators, together with preprocessed rat time-series.more » « less
-
Deep learning (DL) is of great interest in psychiatry due its potential yet largely untapped ability to utilize multidimensional datasets (such as fMRI data) to predict clinical outcomes. Typical DL methods, however, have strong assumptions, such as large datasets and underlying model opaqueness, that are suitable for natural image prediction problems but not medical imaging. Here we describe three relatively novel DL approaches that may help accelerate its incorporation into mainstream psychiatry research and ultimately bring it into the clinic as a prognostic tool. We first introduce two methods that can reduce the amount of training data required to develop accurate models. These may prove invaluable for fMRI-based DL given the time and monetary expense required to acquire neuroimaging data. These methods are (1) transfer learning − the ability of deep learners to incorporate knowledge learned from one data source (e.g., fMRI data from one site) and apply it toward learning from a second data source (e.g., data from another site), and (2) data augmentation (via Mixup) − a self-supervised learning technique in which “virtual” instances are created. We then discuss explainable artificial intelligence (XAI), i.e., tools that reveal what features (and in what combinations) deep learners use to make decisions. XAI can be used to solve the “black box” criticism common in DL and reveal mechanisms that ultimately produce clinical outcomes. We expect these techniques to greatly enhance the applicability of DL in psychiatric research and help reveal novel mechanisms and potential pathways for therapeutic intervention in mental illness.more » « less
An official website of the United States government

