skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gravitational Collapse for Polytropic Gaseous Stars: Self-Similar Solutions
Abstract In the supercritical range of the polytropic indices$$\gamma \in (1,\frac{4}{3})$$ γ ( 1 , 4 3 ) we show the existence of smooth radially symmetric self-similar solutions to the gravitational Euler–Poisson system. These solutions exhibit gravitational collapse in the sense that the density blows up in finite time. Some of these solutions were numerically found by Yahil in 1983 and they can be thought of as polytropic analogues of the Larson–Penston collapsing solutions in the isothermal case$$\gamma =1$$ γ = 1 . They each contain a sonic point, which leads to numerous mathematical difficulties in the existence proof.  more » « less
Award ID(s):
2009458 2106650
PAR ID:
10380555
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Archive for Rational Mechanics and Analysis
Volume:
246
Issue:
2-3
ISSN:
0003-9527
Page Range / eLocation ID:
p. 957-1066
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AbstractWe develop a two-timing perturbation analysis to provide quantitative insights on the existence of temporal ratchets in an exemplary system of a particle moving in a tank of fluid in response to an external vibration of the tank. We consider two-mode vibrations with angular frequencies$$\omega $$ ω and$$\alpha \omega $$ α ω , where$$\alpha $$ α is a rational number. If$$\alpha $$ α is a ratio of odd and even integers (e.g.,$$\tfrac{2}{1},\,\tfrac{3}{2},\,\tfrac{4}{3}$$ 2 1 , 3 2 , 4 3 ), the system yields a net response: here, a nonzero time-average particle velocity. Our first-order perturbation solution predicts the existence of temporal ratchets for$$\alpha =2$$ α = 2 . Furthermore, we demonstrate, for a reduced model, that the temporal ratcheting effect for$$\alpha =\tfrac{3}{2}$$ α = 3 2 and$$\tfrac{4}{3}$$ 4 3 appears at the third-order perturbation solution. More importantly, we find closed-form formulas for the magnitude and direction of the induced net velocities for these$$\alpha $$ α values. On a broader scale, our methodology offers a new mathematical approach to study the complicated nature of temporal ratchets in physical systems. Graphic abstract 
    more » « less
  2. Abstract We consider integral area-minimizing 2-dimensional currents$$T$$ T in$$U\subset \mathbf {R}^{2+n}$$ U R 2 + n with$$\partial T = Q\left [\!\![{\Gamma }\right ]\!\!]$$ T = Q Γ , where$$Q\in \mathbf {N} \setminus \{0\}$$ Q N { 0 } and$$\Gamma $$ Γ is sufficiently smooth. We prove that, if$$q\in \Gamma $$ q Γ is a point where the density of$$T$$ T is strictly below$$\frac{Q+1}{2}$$ Q + 1 2 , then the current is regular at$$q$$ q . The regularity is understood in the following sense: there is a neighborhood of$$q$$ q in which$$T$$ T consists of a finite number of regular minimal submanifolds meeting transversally at$$\Gamma $$ Γ (and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for$$Q=1$$ Q = 1 . As a corollary, if$$\Omega \subset \mathbf {R}^{2+n}$$ Ω R 2 + n is a bounded uniformly convex set and$$\Gamma \subset \partial \Omega $$ Γ Ω a smooth 1-dimensional closed submanifold, then any area-minimizing current$$T$$ T with$$\partial T = Q \left [\!\![{\Gamma }\right ]\!\!]$$ T = Q Γ is regular in a neighborhood of $$\Gamma $$ Γ
    more » « less
  3. Abstract The softmax policy gradient (PG) method, which performs gradient ascent under softmax policy parameterization, is arguably one of the de facto implementations of policy optimization in modern reinforcement learning. For$$\gamma $$ γ -discounted infinite-horizon tabular Markov decision processes (MDPs), remarkable progress has recently been achieved towards establishing global convergence of softmax PG methods in finding a near-optimal policy. However, prior results fall short of delineating clear dependencies of convergence rates on salient parameters such as the cardinality of the state space$${\mathcal {S}}$$ S and the effective horizon$$\frac{1}{1-\gamma }$$ 1 1 - γ , both of which could be excessively large. In this paper, we deliver a pessimistic message regarding the iteration complexity of softmax PG methods, despite assuming access to exact gradient computation. Specifically, we demonstrate that the softmax PG method with stepsize$$\eta $$ η can take$$\begin{aligned} \frac{1}{\eta } |{\mathcal {S}}|^{2^{\Omega \big (\frac{1}{1-\gamma }\big )}} ~\text {iterations} \end{aligned}$$ 1 η | S | 2 Ω ( 1 1 - γ ) iterations to converge, even in the presence of a benign policy initialization and an initial state distribution amenable to exploration (so that the distribution mismatch coefficient is not exceedingly large). This is accomplished by characterizing the algorithmic dynamics over a carefully-constructed MDP containing only three actions. Our exponential lower bound hints at the necessity of carefully adjusting update rules or enforcing proper regularization in accelerating PG methods. 
    more » « less
  4. Abstract We prove that there are$$\gg \frac{X^{\frac{1}{3}}}{(\log X)^2}$$ X 1 3 ( log X ) 2 imaginary quadratic fieldskwith discriminant$$|d_k|\le X$$ | d k | X and an ideal class group of 5-rank at least 2. This improves a result of Byeon, who proved the lower bound$$\gg X^{\frac{1}{4}}$$ X 1 4 in the same setting. We use a method of Howe, Leprévost, and Poonen to construct a genus 2 curveCover$$\mathbb {Q}$$ Q such thatChas a rational Weierstrass point and the Jacobian ofChas a rational torsion subgroup of 5-rank 2. We deduce the main result from the existence of the curveCand a quantitative result of Kulkarni and the second author. 
    more » « less
  5. Abstract It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators$$L_{\beta ,\gamma } =- {\text {div}}D^{d+1+\gamma -n} \nabla $$ L β , γ = - div D d + 1 + γ - n associated to a domain$$\Omega \subset {\mathbb {R}}^n$$ Ω R n with a uniformly rectifiable boundary$$\Gamma $$ Γ of dimension$$d < n-1$$ d < n - 1 , the now usual distance to the boundary$$D = D_\beta $$ D = D β given by$$D_\beta (X)^{-\beta } = \int _{\Gamma } |X-y|^{-d-\beta } d\sigma (y)$$ D β ( X ) - β = Γ | X - y | - d - β d σ ( y ) for$$X \in \Omega $$ X Ω , where$$\beta >0$$ β > 0 and$$\gamma \in (-1,1)$$ γ ( - 1 , 1 ) . In this paper we show that the Green functionGfor$$L_{\beta ,\gamma }$$ L β , γ , with pole at infinity, is well approximated by multiples of$$D^{1-\gamma }$$ D 1 - γ , in the sense that the function$$\big | D\nabla \big (\ln \big ( \frac{G}{D^{1-\gamma }} \big )\big )\big |^2$$ | D ( ln ( G D 1 - γ ) ) | 2 satisfies a Carleson measure estimate on$$\Omega $$ Ω . We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the “magical distance function from David et al. (Duke Math J, to appear). 
    more » « less