skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian Inference for COVID-19 Transmission Dynamics in India Using a Modified SEIR Model
We propose a modified population-based susceptible-exposed-infectious-recovered (SEIR) compartmental model for a retrospective study of the COVID-19 transmission dynamics in India during the first wave. We extend the conventional SEIR methodology to account for the complexities of COVID-19 infection, its multiple symptoms, and transmission pathways. In particular, we consider a time-dependent transmission rate to account for governmental controls (e.g., national lockdown) and individual behavioral factors (e.g., social distancing, mask-wearing, personal hygiene, and self-quarantine). An essential feature of COVID-19 that is different from other infections is the significant contribution of asymptomatic and pre-symptomatic cases to the transmission cycle. A Bayesian method is used to calibrate the proposed SEIR model using publicly available data (daily new tested positive, death, and recovery cases) from several Indian states. The uncertainty of the parameters is naturally expressed as the posterior probability distribution. The calibrated model is used to estimate undetected cases and study different initial intervention policies, screening rates, and public behavior factors, that can potentially strike a balance between disease control and the humanitarian crisis caused by a sudden strict lockdown.  more » « less
Award ID(s):
2028632
PAR ID:
10380758
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Mathematics
Volume:
10
Issue:
21
ISSN:
2227-7390
Page Range / eLocation ID:
4037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As COVID-19 cases continue to rise globally, many researchers have developed mathematical models to help capture the dynamics of the spread of COVID-19. Specifically, the compartmental SEIR model andits variations have been widely employed. These models differ in the type of compartments included, nature of the transmission rates, seasonality, and several other factors. Yet, while the spread of COVID-19 is largely attributed to a wide range of social behaviors in the population, several of these SEIR models do not account for such behaviors. In this project, we consider novel SEIR-based models that incorporate various behaviors. We created a baseline model and explored incorporating both explicit and implicit behavioral changes. Furthermore, using the Next Generation Matrix method, we derive a basic reproduction number, which indicates the estimated number of secondary cases by a single infected individual. Numerical simulations for the various models we made were performed and user-friendly graphical user interfaces were created. In the future, we plan to expand our project to account for the use of face masks, age-based behaviors and transmission rates, and mixing patterns. 
    more » « less
  2. Abstract Background The COVID-19 outbreak in Wuhan started in December 2019 and was under control by the end of March 2020 with a total of 50,006 confirmed cases by the implementation of a series of nonpharmaceutical interventions (NPIs) including unprecedented lockdown of the city. This study analyzes the complete outbreak data from Wuhan, assesses the impact of these public health interventions, and estimates the asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan. Methods By taking different stages of the outbreak into account, we developed a time-dependent compartmental model to describe the dynamics of disease transmission and case detection and reporting. Model coefficients were parameterized by using the reported cases and following key events and escalated control strategies. Then the model was used to calibrate the complete outbreak data by using the Monte Carlo Markov Chain (MCMC) method. Finally we used the model to estimate asymptomatic and undetected cases and approximate the overall antibody prevalence level. Results We found that the transmission rate between Jan 24 and Feb 1, 2020, was twice as large as that before the lockdown on Jan 23 and 67.6 % (95% CI [0.584,0.759]) of detectable infections occurred during this period. Based on the reported estimates that around 20% of infections were asymptomatic and their transmission ability was about 70% of symptomatic ones, we estimated that there were about 14,448 asymptomatic and undetected cases (95% CI [12,364,23,254]), which yields an estimate of a total of 64,454 infected cases (95% CI [62,370,73,260]), and the overall antibody prevalence level in the population of Wuhan was 0.745% (95% CI [0.693 % ,0.814 % ]) by March 31, 2020. Conclusions We conclude that the control of the COVID-19 outbreak in Wuhan was achieved via the enforcement of a combination of multiple NPIs: the lockdown on Jan 23, the stay-at-home order on Feb 2, the massive isolation of all symptomatic individuals via newly constructed special shelter hospitals on Feb 6, and the large scale screening process on Feb 18. Our results indicate that the population in Wuhan is far away from establishing herd immunity and provide insights for other affected countries and regions in designing control strategies and planing vaccination programs. 
    more » « less
  3. The outbreak of COVID-19 resulted in high death tolls all over the world. The aim of this paper is to show how a simple SEIR model was used to make quick predictions for New Jersey in early March 2020 and call for action based on data from China and Italy. A more refined model, which accounts for social distancing, testing, contact tracing and quarantining, is then proposed to identify containment measures to minimize the economic cost of the pandemic. The latter is obtained taking into account all the involved costs including reduced economic activities due to lockdown and quarantining as well as the cost for hospitalization and deaths. The proposed model allows one to find optimal strategies as combinations of implementing various non-pharmaceutical interventions and study different scenarios and likely initial conditions. 
    more » « less
  4. Lal, Rajnesh (Ed.)
    In late 2019, the emergence of COVID-19 in Wuhan, China, led to the implementation of stringent measures forming the zero-COVID policy aimed at eliminating transmission. Zero-COVID policy basically aimed at completely eliminating the transmission of COVID-19. However, the relaxation of this policy in late 2022 reportedly resulted in a rapid surge of COVID-19 cases. The aim of this work is to investigate the factors contributing to this outbreak using a new SEIR-type epidemic model with time-dependent level of immunity. Our model incorporates a time-dependent level of immunity considering vaccine doses administered and time-post-vaccination dependent vaccine efficacy. We find that vaccine efficacy plays a significant role in determining the outbreak size and maximum number of daily infected. Additionally, our model considers under-reporting in daily cases and deaths, revealing their combined effects on the outbreak magnitude. We also introduce a novel Physics Informed Neural Networks (PINNs) approach which is extremely useful in estimating critical parameters and helps in evaluating the predictive capability of our model. 
    more » « less
  5. Kaderali, Lars (Ed.)
    The novel coronavirus responsible for COVID-19 was first identified in Hubei Province, China in December, 2019. Within a matter of months the virus had spread and become a global pandemic. In addition to international air travel, local travel (e.g. by passenger car) contributes to the geographic spread of COVID-19. We modify the common susceptible-exposed-infectious-removed (SEIR) virus spread model and investigate the extent to which short-term travel associated with driving influences the spread of the virus. We consider the case study of the US state of Minnesota, and calibrated the proposed model with travel and viral spread data. Using our modified SEIR model that considers local short-term travel, we are able to better explain the virus spread than using the long-term travel SEIR model. Short-term travel associated with driving is predicted to be a significant contributor to the historical and future spread of COVID-19. The calibrated model also predicts the proportion of infections that were detected. We find that if driving trips remain at current levels, a substantial increase in COVID-19 cases may be observed in Minnesota, while decreasing intrastate travel could help contain the virus spread. 
    more » « less