skip to main content


Title: Rethinking Conversational Recommendations: Is Decision Tree All You Need?
Conversational recommender systems (CRS) dynamically obtain the users' preferences via multi-turn questions and answers. The existing CRS solutions are widely dominated by deep reinforcement learning algorithms. However, deep reinforcement learning methods are often criticized for lacking interpretability and requiring a large amount of training data to perform.In this paper, we explore a simpler alternative and propose a decision tree based solution to CRS. The underlying challenge in CRS is that the same item can be described differently by different users. We show that decision trees are sufficient to characterize the interactions between users and items, and solve the key challenges in multi-turn CRS: namely which questions to ask, how to rank the candidate items, when to recommend, and how to handle user's negative feedback on the recommendations. Firstly, the training of decision trees enables us to find questions which effectively narrow down the search space. Secondly, by learning embeddings for each item and tree nodes, the candidate items can be ranked based on their similarity to the conversation context encoded by the tree nodes. Thirdly, the diversity of items associated with each tree node allows us to develop an early stopping strategy to decide when to make recommendations. Fourthly, when the user rejects a recommendation, we adaptively choose the next decision tree to improve subsequent questions and recommendations. Extensive experiments on three publicly available benchmark CRS datasets show that our approach provides significant improvement to the state of the art CRS methods.  more » « less
Award ID(s):
2007492 1553568 2128019
PAR ID:
10381237
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 31st ACM International Conference on Information & Knowledge Management
Page Range / eLocation ID:
686 to 695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Latent factor models have achieved great success in personalized recommendations, but they are also notoriously difficult to explain. In this work, we integrate regression trees to guide the learning of latent factor models for recommendation, and use the learnt tree structure to explain the resulting latent factors. Specifically, we build regression trees on users and items respectively with user-generated reviews, and associate a latent profile to each node on the trees to represent users and items. With the growth of regression tree, the latent factors are gradually refined under the regularization imposed by the tree structure. As a result, we are able to track the creation of latent profiles by looking into the path of each factor on regression trees, which thus serves as an explanation for the resulting recommendations. Extensive experiments on two large collections of Amazon and Yelp reviews demonstrate the advantage of our model over several competitive baseline algorithms. Besides, our extensive user study also confirms the practical value of explainable recommendations generated by our model. 
    more » « less
  2. Decision Forests are popular machine learning techniques that assist scientists to extract knowledge from massive data sets. This class of tool remains popular because of their interpretability and ease of use, unlike other modern machine learning methods, such as kernel machines and deep learning. Decision forests also scale well for use with large data because training and run time operations are trivially parallelizable allowing for high inference throughputs. A negative aspect of these forests, and an untenable property for many real time applications, is their high inference latency caused by the combination of large model sizes with random memory access patterns. We present memory packing techniques and a novel tree traversal method to overcome this deficiency. The result of our system is a grouping of trees into a hierarchical structure. At low levels, we pack the nodes of multiple trees into contiguous memory blocks so that each memory access fetches data for multiple trees. At higher levels, we use leaf cardinality to identify the most popular paths through a tree and collocate those paths in contiguous cache lines. We extend this layout with a re-ordering of the tree traversal algorithm to take advantage of the increased memory throughput provided by out-of-order execution and cache-line prefetching. Together, these optimizations increase the performance and parallel scalability of classification in ensembles by a factor of ten over an optimized C++ implementation and a popular R-language implementation. 
    more » « less
  3. Tree-based models such as decision trees and random forests (RF) are a cornerstone of modern machine-learning practice. To mitigate overfitting, trees are typically regularized by a variety of techniques that modify their structure (e.g. pruning). We introduce Hierarchical Shrinkage (HS), a post-hoc algorithm that does not modify the tree structure, and instead regularizes the tree by shrinking the prediction over each node towards the sample means of its ancestors. The amount of shrinkage is controlled by a single regularization parameter and the number of data points in each ancestor. Since HS is a post-hoc method, it is extremely fast, compatible with any tree growing algorithm, and can be used synergistically with other regularization techniques. Extensive experiments over a wide variety of real world datasets show that HS substantially increases the predictive performance of decision trees, even when used in conjunction with other regularization techniques. Moreover, we find that applying HS to each tree in an RF often improves accuracy, as well as its interpretability by simplifying and stabilizing its decision boundaries and SHAP values. We further explain the success of HS in improving prediction performance by showing its equivalence to ridge regression on a (supervised) basis constructed of decision stumps associated with the internal nodes of a tree. All code and models are released in a full fledged package available on Github. 
    more » « less
  4. An overall rating cannot reveal the details of user’s preferences toward each feature of a product. One widespread practice of e-commerce websites is to provide ratings on predefined aspects of the product and user-generated reviews. Most recent multi-criteria works employ aspect preferences of users or user reviews to understand the opinions and behavior of users. However, these works fail to learn how users correlate these information sources when users express their opinion about an item. In this work, we present Multi-task & Multi-Criteria Review-based Rating (MMCRR), a framework to predict the overall ratings of items by learning how users represent their preferences when using multi-criteria ratings and text reviews. We conduct extensive experiments with three real-life datasets and six baseline models. The results show that MMCRR can reduce prediction errors while learning features better from the data. 
    more » « less
  5. Chaudhuri, Kamalika ; Jegelka, Stefanie ; Song, Le ; Szepesvari, Csaba ; Niu, Gang ; Sabato, Sivan (Ed.)
    In real-world recommendation problems, especially those with a formidably large item space, users have to gradually learn to estimate the utility of any fresh recommendations from their experience about previously consumed items. This in turn affects their interaction dynamics with the system and can invalidate previous algorithms built on the omniscient user assumption. In this paper, we formalize a model to capture such ”learning users” and design an efficient system-side learning solution, coined Noise-Robust Active Ellipsoid Search (RAES), to confront the challenges brought by the non-stationary feedback from such a learning user. Interestingly, we prove that the regret of RAES deteriorates gracefully as the convergence rate of user learning becomes worse, until reaching linear regret when the user’s learning fails to converge. Experiments on synthetic datasets demonstrate the strength of RAES for such a contemporaneous system-user learning problem. Our study provides a novel perspective on modeling the feedback loop in recommendation problems. 
    more » « less