skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quasar UV Luminosity Function at 3.5 < z < 5.0 from SDSS Deep Imaging Data
Abstract We present a well-designed sample of more than 1000 type 1 quasars at 3.5 < z < 5 and derive UV quasar luminosity functions (QLFs) in this redshift range. These quasars were selected using the Sloan Digital Sky Survey (SDSS) imaging data in the Stripe 82 and overlap regions with repeat imaging observations that are about 1 mag fainter than the SDSS single-epoch data. The follow-up spectroscopic observations were conducted by the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) as one of the BOSS ancillary programs. Reaching i ∼ 21.5 mag, our sample bridges previous samples from brighter and deeper surveys. We use a 1/ V a method to derive binned QLFs at 3.6 < z < 4.0, 4.0 < z < 4.5, and 4.5 < z < 4.9 and then use a double power-law model to parameterize the QLFs. We also combine our data with literature QLFs to better constrain the QLFs across a much wider luminosity baseline. The faint- and bright-end slopes of the QLFs in this redshift range are around −1.7 and −3.7, respectively, with uncertainties from 0.2 to 0.3 to >0.5. The evolution of the QLFs from z ∼ 5 to 3.5 can be described by a pure density evolution model (∝10 kz ) with a parameter k similar to that at 5 < z < 7, suggesting a nearly uniform evolution of the quasar density at z = 3.5–7.  more » « less
Award ID(s):
1908284
PAR ID:
10381317
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
928
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
172
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report the first results of a high-redshift (z≳ 5) quasar survey using the Dark Energy Spectroscopic Instrument (DESI). As a DESI secondary target program, this survey is designed to carry out a systematic search and investigation of quasars at 4.8 <z< 6.8. The target selection is based on the DESI Legacy Imaging Surveys (the Legacy Surveys) DR9 photometry, combined with the Pan-STARRS1 data andJ-band photometry from public surveys. A first quasar sample has been constructed from the DESI Survey Validation 3 (SV3) and first-year observations until 2022 May. This sample includes more than 400 new quasars at redshift 4.7 ≤z< 6.6, down to 21.5 magnitude (AB) in thezband, discovered from 35% of the entire target sample. Remarkably, there are 220 new quasars identified atz≥ 5, more than one-third of existing quasars previously published at this redshift. The observations so far result in an average success rate of 23% atz> 4.7. The current spectral data set has already allowed analysis of interesting individual objects (e.g., quasars with damped Lyαabsorbers and broad absorption line features), and statistical analysis will follow the survey’s completion. A set of science projects will be carried out leveraging this program, including quasar luminosity function, quasar clustering, intergalactic medium, quasar spectral properties, intervening absorbers, and properties of early supermassive black holes. Additionally, a sample of 38 new quasars atz∼ 3.8–5.7 discovered from a pilot survey in the DESI SV1 is also published in this paper. 
    more » « less
  2. Abstract About 70 luminous quasars discovered atz> 6.5 are strongly biased toward the bright end, thus not providing a comprehensive view of quasar abundance beyond the cosmic dawn. We present the predicted results of the Roman/Rubin high-redshift quasar survey, yielding 3 times more, 2–4 mag deeper quasar samples, probing high-redshift quasars across a broad range of luminosities, especially faint quasars atLbol∼ 1010LorM1450∼ −22, which are currently poorly explored. We include high-zquasars, galactic dwarfs, and low-zcompact galaxies with similar colors as quasar candidates. We create mock catalogs based on population models to evaluate selection completeness and efficiency. We utilize the classical color dropout method in thezandYbands to select primary quasar candidates, followed up with the Bayesian selection method to identify quasars. We show that overall selection completeness >80% and efficiency ∼10% at 6.5 <z< 9, with 180 quasars atz> 6.5, 20 atz> 7.5, and 2 atz> 8.5. The quasar yields depend sensitively on the assumed quasar luminosity shape and redshift evolution. Brown dwarf rejection through proper motion up to 50% can be made for stars brighter than 25 mag, low-zgalaxies dominate at fainter magnitude. Our results show that Roman/Rubin are able to discover a statistical sample of the earliest and faintest quasars in the Universe. The new valuable data sets are worth follow-up studies with JWST and Extremely Large Telescopes to determine the quasar luminosity function faint end slope and constraint the supermassive black holes growth in the early Universe. 
    more » « less
  3. ABSTRACT We introduce a probabilistic approach to select 6 ≤ $$z$$ ≤ 8 quasar candidates for spectroscopic follow-up, which is based on density estimation in the high-dimensional space inhabited by the optical and near-infrared photometry. Densities are modelled as Gaussian mixtures with principled accounting of errors using the extreme deconvolution (XD) technique, generalizing an approach successfully used to select lower redshift ($$z$$ ≤ 3) quasars. We train the probability density of contaminants on 1902 071 7-d flux measurements from the 1076 deg2 overlapping area from the Dark Energy Camera Legacy Survey (DECaLS) ($$z$$), VIKING (YJHKs), and unWISE (W1W2) imaging surveys, after requiring they dropout of DECaLS g and r, whereas the distribution of high-$$z$$ quasars are trained on synthetic model photometry. Extensive simulations based on these density distributions and current estimates of the quasar luminosity function indicate that this method achieves a completeness of $$\ge 56{{\ \rm per\ cent}}$$ and an efficiency of $$\ge 5{{\ \rm per\ cent}}$$ for selecting quasars at 6 < $$z$$ < 8 with JAB < 21.5. Among the classified sources are 8 known 6 < $$z$$ < 7 quasars, of which 2/8 are selected suggesting a completeness $$\simeq 25{{\ \rm per\ cent}}$$, whereas classifying the 6 known (JAB < 21.5) quasars at $$z$$ > 7 from the entire sky, we select 5/6 or a completeness of $$\simeq 80{{\ \rm per\ cent}}$$. The failure to select the majority of 6 < $$z$$ < 7 quasars arises because our quasar density model is based on an empirical quasar spectral energy distribution model that underestimates the scatter in the distribution of fluxes. This new approach to quasar selection paves the way for efficient spectroscopic follow-up of Euclid quasar candidates with ground-based telescopes and James Webb Space Telescope. 
    more » « less
  4. Abstract Luminous quasars are powerful targets to investigate the role of feedback from supermassive black holes (BHs) in regulating the growth phases of BHs themselves and of their host galaxies, up to the highest redshifts. Here we investigate the cosmic evolution of the occurrence and kinematics of BH-driven outflows, as traced by broad absorption line (BAL) features, due to the C iv ionic transition. We exploit a sample of 1935 quasars at z = 2.1–6.6 with bolometric luminosity log( L bol /erg s −1 ) ≳ 46.5, drawn from the Sloan Digital Sky Survey and from the X-Shooter legacy survey of Quasars at the Reionization Epoch (XQR-30). We consider rest-frame optical bright quasars to minimize observational biases due to quasar selection criteria. We apply a homogeneous BAL-identification analysis, based on employing composite template spectra to estimate the quasar intrinsic emission. We find a BAL quasar fraction close to 20% at z ∼ 2–4, while it increases to almost 50% at z ∼ 6. The velocity and width of the BAL features also increase at z ≳ 4.5. We exclude the possibility that the redshift evolution of the BAL properties is due to differences in terms of quasar luminosity and accretion rate. These results suggest significant BH feedback occurring in the 1 Gyr old universe, likely affecting the growth of BHs and, possibly, of their host galaxies, as supported by models of early BH and galaxy evolution. 
    more » « less
  5. null (Ed.)
    ABSTRACT X-ray observations provide a unique probe of the accretion disc corona of supermassive black holes (SMBHs). In this paper, we present a uniform Chandra X-ray data analysis of a sample of 152 z ≥ 4.5 quasars. We firmly detect 46 quasars of this sample in 0.5–2 keV above 3σ and calculate the upper limits of the X-ray flux of the remaining. We also estimate the power-law photon index of the X-ray spectrum of 31 quasars. 24 of our sample quasars are detected in the FIRST or NVSS radio surveys; all of them are radio-loud. We statistically compare the X-ray properties of our z ≥ 4.5 quasars to other X-ray samples of active galactic nuclei (AGNs) at different redshifts. The relation between the rest-frame X-ray luminosity and other quasar parameters, such as the bolometric luminosity, UV luminosity, or SMBH mass, shows large scatters. These large scatters can be attributed to the narrow luminosity range at the highest redshift, the large measurement error based on relatively poor X-ray data, and the inclusion of radio-loud quasars in the sample. The LX–LUV relationship is significantly sublinear. We do not find a significant redshift evolution of the LX–LUV relation, expressed either in the slope of this relation, or the departure of individual AGNs from the best-fitting αOX–LUV relation (ΔαOX). The median value of the X-ray photon index is Γ ≈ 1.79, which does not show redshift evolution from z = 0 to z ∼ 7. The X-ray and UV properties of the most distant quasars could potentially be used as a standard candle to constrain cosmological models. The large scatter of our sample on the Hubble diagram highlights the importance of future large unbiased deep X-ray and radio surveys in using quasars in cosmological studies. 
    more » « less