skip to main content

Title: Water levels primarily drive variation in photosynthesis and nutrient use of scrub Red Mangroves in the southeastern Florida Everglades
Abstract We investigated how mangrove-island micro-elevation (i.e., habitat: center vs edge) affects tree physiology in a scrub mangrove forest of the southeastern Everglades. We measured leaf gas exchange rates of scrub Rhizophora mangle L. trees monthly during 2019, hypothesizing that CO2 assimilation (Anet) and stomatal conductance (gsw) would decline with increasing water levels and salinity, expecting more considerable differences at mangrove-island edges than centers, where physiological stress is greatest. Water levels varied between 0 and 60 cm from the soil surface, rising during the wet season (May–October) relative to the dry season (November–April). Porewater salinity ranged from 15 to 30 p.p.t., being higher at mangrove-island edges than centers. Anet maximized at 15.1 μmol m−2 s−1, and gsw was typically <0.2 mol m−2 s−1, both of which were greater in the dry than the wet season and greater at island centers than edges, with seasonal variability being roughly equal to variation between habitats. After accounting for season and habitat, water level positively affected Anet in both seasons but did not affect gsw. Our findings suggest that inundation stress (i.e., water level) is the primary driver of variation in leaf gas exchange rates of scrub mangroves in the Florida Everglades, while also constraining Anet more than gsw. The interaction between more » inundation stress due to permanent flooding and habitat varies with season as physiological stress is alleviated at higher-elevation mangrove-island center habitats during the dry season. Freshwater inflows during the wet season increase water levels and inundation stress at higher-elevation mangrove-island centers, but also potentially alleviate salt and sulfide stress in soils. Thus, habitat heterogeneity leads to differences in nutrient and water acquisition and use between trees growing in island centers versus edges, creating distinct physiological controls on photosynthesis, which likely affect carbon flux dynamics of scrub mangroves in the Everglades. « less
Authors:
; ; ; ;
Editors:
Ball, Marilyn
Award ID(s):
2025954 1832229
Publication Date:
NSF-PAR ID:
10381561
Journal Name:
Tree Physiology
Volume:
42
Issue:
4
Page Range or eLocation-ID:
797 to 814
ISSN:
1758-4469
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred metersMore>>
  2. Coastal wetlands are globally important stores of carbon (C). However, accelerated sea-level rise (SLR), increased saltwater intrusion, and modified freshwater discharge can contribute to the collapse of peat marshes, converting coastal peatlands into open water. Applying results from multiple experiments from sawgrass (Cladium jamaicense)-dominated freshwater and brackish water marshes in the Florida Coastal Everglades, we developed a system-level mechanistic peat elevation model (EvPEM). We applied the model to simulate net ecosystem C balance (NECB) and peat elevation in response to elevated salinity under inundation and drought exposure. Using a mass C balance approach, we estimated net gain in C and corresponding export of aquatic fluxes ( ) in the freshwater marsh under ambient conditions (NECB = 1119 ± 229 gC m−2 year−1; FAQ = 317 ± 186 gC m−2 year−1). In contrast, the brackish water marsh exhibited substantial peat loss and aquatic C export with ambient (NECB = −366 ± 15 gC m−2 year−1; FAQ = 311 ± 30 gC m−2 year−1) and elevated salinity (NECB = −594 ± 94 gC m−2 year−1; FAQ = 729 ± 142 gC m−2 year−1) under extended exposed conditions. Further, mass balance suggests a considerable decline in soil C and corresponding elevation loss with elevated salinity and seasonal dry-down. Applying EvPEM, we developed critical marsh net primarymore »productivity (NPP) thresholds as a function of salinity to simulate accumulating, steady-state, and collapsing peat elevations. The optimization showed that ~150–1070 gC m−2 year−1 NPP could support a stable peat elevation (elevation change ≈ SLR), with the corresponding salinity ranging from 1 to 20 ppt under increasing inundation levels. The C budgeting and modeling illustrate the impacts of saltwater intrusion, inundation, and seasonal dry-down and reduce uncertainties in understanding the fate of coastal peat wetlands with SLR and freshwater restoration. The modeling results provide management targets for hydrologic restoration based on the ecological conditions needed to reduce the vulnerability of the Everglades' peat marshes to collapse. The approach can be extended to other coastal peatlands to quantify C loss and improve understanding of the influence of the biological controls on wetland C storage changes for coastal management.« less
  3. Abstract

    Trees are suffering mortality across the globe as a result of drought, warming, and biotic attacks. The combined effects of warming and drought onin situtree chemical defenses against herbivory have not been studied to date. To address this, we transplanted mature piñon pine trees—a well-studied species that has undergone extensive drought and herbivore-related mortality—within their native woodland habitat and also to a hotter-drier habitat and measured monoterpene emissions and concentrations across the growing season. We hypothesized that greater needle temperatures in the hotter-drier site would increase monoterpene emission rates and consequently lower needle monoterpene concentrations, and that this temperature effect would dominate the seasonal pattern of monoterpene concentrations regardless of drought. In support of our hypothesis, needle monoterpene concentrations were lower across all seasons in trees transplanted to the hotter-drier site. Contrary to our hypothesis, basal emission rates (emission rates normalized to 30 °C and a radiative flux of 1000μmol m−2s−1) did not differ between sites. This is because an increase in emissions at the hotter-drier site from a 1.5 °C average temperature increase was offset by decreased emissions from greater plant water stress. High emission rates were frequently observed during June, which were not related to plant physiologicalmore »or environmental factors but did not occur below pre-dawn leaf water potentials of −2 MPa, the approximate zero carbon assimilation point in piñon pine. Emission rates were also not under environmental or plant physiological control when pre-dawn leaf water potential was less than −2 MPa. Our results suggest that drought may override the effects of temperature on monoterpene emissions and tissue concentrations, and that the influence of drought may occur through metabolic processes sensitive to the overall needle carbon balance.

    « less
  4. Water-use efficiency (WUE), weighing the balance between plant transpiration and growth, is a key characteristic of ecosystem functioning and a component of tree drought resistance. Seasonal dynamics of tree-level WUE and its connections with drought variability have not been previously explored in sky-island montane forests. We investigated whole-tree transpiration and stem growth of bristlecone ( Pinus longaeva ) and limber pine ( Pinus flexilis ) within a high-elevation stand in central-eastern Nevada, United States, using sub-hourly measurements over 5 years (2013–2017). A moderate drought was generally observed early in the growing season, whereas interannual variability of summer rains determined drought levels between years, i.e., reducing drought stress in 2013–2014 while enhancing it in 2015–2017. Transpiration and basal area increment (BAI) of both pines were coupled throughout June–July, resulting in a high but relatively constant early season WUE. In contrast, both pines showed high interannual plasticity in late-season WUE, with a predominant role of stem growth in driving WUE. Overall, bristlecone pine was characterized by a lower WUE compared to limber pine. Dry or wet episodes in the late growing season overrode species differences. Our results suggested thresholds of vapor pressure deficit and soil moisture that would lead to opposite responsesmore »of WUE to late-season dry or wet conditions. These findings provide novel insights and clarify potential mechanisms modulating tree-level WUE in sky-island ecosystems of semi-arid regions, thereby helping land managers to design appropriate science-based strategies and reduce uncertainties associated with the impact of future climatic changes.« less
  5. Abstract

    Epikarst estuary response to hydroclimate change remains poorly understood, despite the well-studied link between climate and karst groundwater aquifers. The influence of sea-level rise and coastal geomorphic change on these estuaries obscures climate signals, thus requiring careful development of paleoenvironmental histories to interpret the paleoclimate archives. We used foraminifera assemblages, carbon stable isotope ratios (δ13C) and carbon:nitrogen (C:N) mass ratios of organic matter in sediment cores to infer environmental changes over the past 5300 years in Celestun Lagoon, Yucatan, Mexico. Specimens (> 125 µm) from modern core top sediments revealed three assemblages: (1) a brackish mangrove assemblage of agglutinatedMiliamminaandAmmotiumtaxa and hyalineHaynesina(2) an inner-shelf marine assemblage ofBolivina,Hanzawaia, andRosalina,and (3) a brackish assemblage dominated byAmmoniaandElphidium. Assemblages changed along the lagoon channel in response to changes in salinity and vegetation, i.e. seagrass and mangrove. In addition to these three foraminifera assemblages, lagoon sediments deposited since 5300 cal yr BP are comprised of two more assemblages, defined byArchaiasandLaevipeneroplis,which indicate marineThalassiaseagrasses, andTrichohyalus,which indicates restricted inland mangrove ponds. Our data suggest that Celestun Lagoon displayed four phases of development: (1) an inland mangrove pond (5300 BP) (2) a shallow unprotected coastline with marine seagrass and barrier island initiation (4900 BP) (3) a protected brackish lagoon (3000 BP), and (4) amore »protected lagoon surrounded by mangroves (1700 BP). Stratigraphic (temporal) changes in core assemblages resemble spatial differences in communities across the modern lagoon, from the southern marine sector to the northern brackish region. Similar temporal patterns have been reported from other Yucatan Peninsula lagoons and fromcenotes(Nichupte, Aktun Ha), suggesting a regional coastal response to sea level rise and climate change, including geomorphic controls (longshore drift) on lagoon salinity, as observed today. Holocene barrier island development progressively protected the northwest Yucatan Peninsula coastline, reducing mixing between seawater and rain-fed submarine groundwater discharge. Superimposed on this geomorphic signal, assemblage changes that are observed reflect the most severe regional wet and dry climate episodes, which coincide with paleoclimate records from lowland lake archives (Chichancanab, Salpeten). Our results emphasize the need to consider coastal geomorphic evolution when using epikarst estuary and lagoon sediment archives for paleoclimate reconstruction and provide evidence of hydroclimate changes on the Yucatan Peninsula.

    « less