skip to main content

Title: AdaAfford: Learning to Adapt Manipulation Affordance for 3D Articulated Objects via Few-shot Interactions
Perceiving and interacting with 3D articulated objects, such as cabinets, doors, and faucets, pose particular challenges for future home-assistant robots performing daily tasks in human environments. Besides parsing the articulated parts and joint parameters, researchers recently advocate learning manipulation affordance over the input shape geometry which is more task-aware and geometrically fine-grained. However, taking only passive observations as inputs, these methods ignore many hidden but important kinematic constraints (e.g., joint location and limits) and dynamic factors (e.g., joint friction and restitution), therefore losing significant accuracy for test cases with such uncertainties. In this paper, we propose a novel framework, named AdaAfford, that learns to perform very few test-time interactions for quickly adapting the affordance priors to more accurate instance-specific posteriors. We conduct large-scale experiments using the PartNet-Mobility dataset and prove that our system performs better than baselines.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
European Conference on Computer Vision 2022
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Perceiving and manipulating 3D articulated objects (e.g., cabinets, doors) in human environments is an important yet challenging task for future home-assistant robots. The space of 3D articulated objects is exceptionally rich in their myriad semantic categories, diverse shape geometry, and complicated part functionality. Previous works mostly abstract kinematic structure with estimated joint parameters and part poses as the visual representations for manipulating 3D articulated objects. In this paper, we propose object-centric actionable visual priors as a novel perception-interaction handshaking point that the perception system outputs more actionable guidance than kinematic structure estimation, by predicting dense geometry-aware, interaction-aware, and task-aware visual action affordance and trajectory proposals. We design an interaction-for-perception framework VAT-Mart to learn such actionable visual representations by simultaneously training a curiosity-driven reinforcement learning policy exploring diverse interaction trajectories and a perception module summarizing and generalizing the explored knowledge for pointwise predictions among diverse shapes. Experiments prove the effectiveness of the proposed approach using the large-scale PartNet-Mobility dataset in SAPIEN environment and show promising generalization capabilities to novel test shapes, unseen object categories, and real-world data. 
    more » « less
  2. Abstract This article describes the development and evaluation of our passively actuated closed-loop articulated wearable (CLAW) that uses a common slider to passively drive its exo-fingers for use in physical training of people with limited hand mobility. Our design approach utilizes physiological tasks for dimensional synthesis and yields a variety of design candidates that fulfill the desired fingertip precision grasping trajectory. Once it is ensured that the synthesized fingertip motion is close to the physiological fingertip grasping trajectories, performance assessment criteria related to user–device interference and natural joint angle movement are taken into account. After the most preferred design for each finger is chosen, minor modifications are made related to substituting the backbone chain with the wearer’s limb to provide the skeletal structure for the customized passive device. Subsequently, we evaluate it for natural joint motion based on a novel design candidate assessment method. A hand prototype is printed, and its preliminary performance regarding natural joint motion, wearability, and scalability are assessed. The pilot experimental test on a range of healthy subjects with different hand/finger sizes shows that the CLAW hand is easy to operate and guides the user’s fingers without causing any discomfort. It also ensures both precision and power grasping in a natural manner. This study establishes the importance of incorporating novel design candidate assessment techniques, based on human finger kinematic models, on a conceptual design level that can assist in finding design candidates for natural joint motion coordination. 
    more » « less
  3. We present an end-to-end method for capturing the dynamics of 3D human characters and translating them for synthesizing new, visually-realistic motion sequences. Conventional methods employ sophisticated, but generic, control approaches for driving the joints of articulated characters, paying little attention to the distinct dynamics of human joint movements. In contrast, our approach attempts to synthesize human-like joint movements by exploiting a biologically-plausible, compact network of spiking neurons that drive joint control in primates and rodents. We adapt the controller architecture by introducing learnable components and propose an evolutionary algorithm for training the spiking neural network architectures and capturing diverse joint dynamics. Our method requires only a few samples for capturing the dynamic properties of a joint's motion and exploits the biologically-inspired, trained controller for its reconstruction. More importantly, it can transfer the captured dynamics to new visually-plausible motion sequences. To enable user-dependent tailoring of the resulting motion sequences, we develop an interactive framework that allows for editing and real-time visualization of the controlled 3D character. We also demonstrate the applicability of our method to real human motion capture data by learning the hand joint dynamics from a gesture dataset and using our framework to reconstruct the gestures with our 3D animated character. The compact architecture of our joint controller emerging from its biologically-realistic design, and the inherent capacity of our evolutionary learning algorithm for parallelization, suggest that our approach could provide an efficient and scalable alternative for synthesizing 3D character animations with diverse and visually-realistic motion dynamics.

    more » « less
  4. Highly articulated organisms serve as blueprints for incredibly dexterous mechanisms, but building similarly capable robotic counterparts has been hindered by the difficulties of developing electromechanical actuators with both the high strength and compactness of biological muscle. We develop a stackable electrostatic brake that has comparable specific tension and weight to that of muscles and integrate it into a robotic joint. High degree-of-freedom mechanisms composed of such electrostatic brake enabled joints can then employ established control algorithms to achieve hybrid motor-brake actuated dexterous manipulation. Specifically, our joint design enables a ten degree-of-freedom robot equipped with only one motor to manipulate multiple objects simultaneously. We also show that the use of brakes allows a two-fingered robot to perform in-hand re-positioning of an object 45% more quickly and with 53% lower positioning error than without brakes. Relative to fully actuated robots, robots equipped with such electrostatic brakes will have lower weight, volume, and power consumption yet retain the ability to reach arbitrary joint configurations.

    more » « less
  5. Robotic manipulation can greatly benefit from the data efficiency, robustness, and predictability of model-based methods if robots can quickly generate models of novel objects they encounter. This is especially difficult when effects like complex joint friction lack clear first-principles models and are usually ignored by physics simulators. Further, numerically-stiff contact dynamics can make common model-building approaches struggle. We propose a method to simultaneously learn contact and continuous dynamics of a novel, possibly multi-link object by observing its motion through contact-rich trajectories. We formulate a system identification process with a loss that infers unmeasured contact forces, penalizing their violation of physical constraints and laws of motion given current model parameters. Our loss is unlike prediction-based losses used in differentiable simulation. Using a new dataset of real articulated object trajectories and an existing cube toss dataset, our method outperforms differentiable simulation and end-to-end alternatives with more data efficiency. See our project page for code, datasets, and media: 
    more » « less