The quantum limit in a Fermi liquid, realized when a single Landau level is occupied in strong magnetic fields, gives rise to unconventional states, including the fractional quantum Hall effect and excitonic insulators. Stronger interactions in metals with nearly localized
We report on the effects of strong magnetic fields on neutrino emission in the modified Urca process. We show that the effect of Landau levels on the various Urca pairs affects the neutrino emission spectrum and leads to an angular asymmetry in the neutrino emission. For low magnetic fields, the Landau levels have almost no effect on the cooling. However, as the field strength increases, the electron chemical potential increases resulting in a lower density at which Urca pairs can exist. For intermediate field strength, there is an interesting interference between the Landau level distribution and the Fermi distribution. For high enough field strength, the entire electron energy spectrum is eventually confined to a single Landau level producing dramatic spikes in the emission spectrum.
more » « less- PAR ID:
- 10381846
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 940
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 108
- Size(s):
- Article No. 108
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract f -electron degrees of freedom increase the likelihood of these unconventional states. However, access to the quantum limit is typically impeded by the tendency off -electrons to polarize in a strong magnetic field, consequently weakening the interactions. In this study, we propose that the quantum limit in such systems must be approached in reverse, starting from an insulating state at zero magnetic field. In this scenario, Landau levels fill in the reverse order compared to regular metals and are closely linked to a field-induced insulator-to-metal transition. We identify YbB12as a prime candidate for observing this effect and propose the presence of an excitonic insulator state near this transition. -
We perform resonant Raman spectroscopy on 8◦ twisted bilayer graphene placed in an out-of-plane magnetic field. The high-quality device has narrow Landau level linewidth of less than 5 meV that enables detection of features from both electronic Raman scattering and magnetophonon resonance involving electronic transitions between the low energy Landau levels. Two magnetophonon resonances are observed, one at 4.6T in the strong coupling regime, and the other at 2.6T in the weak coupling regime. Using the measured Landau level transition energy, we analyze the renormalization of effective band velocity, whose dependence on magnetic field points to a 20% enhancement of dielectric constant due to the presence of an adjacent graphene layer, a quite prominent screening effect from a monolayer of carbon atoms in proximity. Both the Landau level transition electronic Raman and the magnetophonon resonance are gate tunable. Harnessing angular momentum conservation, we demonstrate charge tuning of electron phonon coupling strength for left and right circularly polarized G band phonons separately.more » « less
-
Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)We study the v\bar v\-pair emission from electrons and protons in a relativistic quantum approach. In this work we calculate the luminosity of the v\bar v\-pairs emitted from neutron-star-matter with a strong magnetic field, and find that this luminosity is much larger than that in the modified Urca process. The v\bar v\-pair emission processes in strong magnetic fields significantly contribute to the cooling of the magnetars.more » « less
-
The interaction of high-intensity lasers with plasma is predicted to produce extreme quasi-static magnetic fields with magnitudes approaching Megatesla levels. In relativistically transparent plasmas, these fields can enhance direct laser acceleration and allow efficient gamma-ray emission by accelerated electrons. However, due to the so-called magnetic suppression effect, the magnetic field can also affect radiating electron trajectories and, thus, reduce the emission probability of the bremsstrahlung. This is the first study to examine the bremsstrahlung suppression mechanism in the context of high-intensity laser–plasma interactions. Our paper describes a new module that integrates the suppression effect into the standard bremsstrahlung module of the EPOCH particle-in-cell code by considering the impact of magnetic fields and extending the analysis to electric fields. We also investigate this suppressing mechanism's effect on the emitting electron's dynamics. Our findings show that this mechanism not only suppresses low-energy emissions but also has an impact on the dynamics of the radiating electrons.
-
Abstract Strong many-body interaction in two-dimensional transitional metal dichalcogenides provides a unique platform to study the interplay between different quasiparticles, such as prominent phonon replica emission and modified valley-selection rules. A large out-of-plane magnetic field is expected to modify the exciton-phonon interactions by quantizing excitons into discrete Landau levels, which is largely unexplored. Here, we observe the Landau levels originating from phonon-exciton complexes and directly probe exciton-phonon interaction under a quantizing magnetic field. Phonon-exciton interaction lifts the inter-Landau-level transition selection rules for dark trions, manifested by a distinctively different Landau fan pattern compared to bright trions. This allows us to experimentally extract the effective mass of both holes and electrons. The onset of Landau quantization coincides with a significant increase of the valley-Zeeman shift, suggesting strong many-body effects on the phonon-exciton interaction. Our work demonstrates monolayer WSe2as an intriguing playground to study phonon-exciton interactions and their interplay with charge, spin, and valley.