We introduce a general differentiable solver for time-dependent deformation problems with contact and friction. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve ODE- and PDE-constrained optimization problems on scenes with complex geometry. It supports static and dynamic problems and differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters, and initial conditions. Our analytically derived adjoint formulation is efficient, with a small overhead (typically less than 10% for nonlinear problems) over the forward simulation, and shares many similarities with the forward problem, allowing the reuse of large parts of existing forward simulator code. We implement our approach on top of the open-source PolyFEM library and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and physical validations.
more »
« less
A general two-stage initialization for sag-free deformable simulations
Initializing simulations of deformable objects involves setting the rest state of all internal forces at the rest shape of the object. However, often times the rest shape is not explicitly provided. In its absence, it is common to initialize by treating the given initial shape as the rest shape. This leads to sagging, the undesirable deformation under gravity as soon as the simulation begins. Prior solutions to sagging are limited to specific simulation systems and material models, most of them cannot handle frictional contact, and they require solving expensive global nonlinear optimization problems. We introduce a novel solution to the sagging problem that can be applied to a variety of simulation systems and materials. The key feature of our approach is that we avoid solving a global nonlinear optimization problem by performing the initialization in two stages. First, we use a global linear optimization for static equilibrium. Any nonlinearity of the material definition is handled in the local stage, which solves many small local problems efficiently and in parallel. Notably, our method can properly handle frictional contact orders of magnitude faster than prior work. We show that our approach can be applied to various simulation systems by presenting examples with mass-spring systems, cloth simulations, the finite element method, the material point method, and position-based dynamics.
more »
« less
- Award ID(s):
- 1956085
- PAR ID:
- 10382010
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 41
- Issue:
- 4
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lagrangian/Eulerian hybrid strand-based hair simulation techniques have quickly become a popular approach in VFX and real-time graphics applications. With Lagrangian hair dynamics, the inter-hair contacts are resolved in the Eulerian grid using the continuum method, i.e., the MPM scheme with the granular Drucker-Prager rheology, to avoid expensive collision detection and handling. This fuzzy collision handling makes the authoring process significantly easier. However, although current hair grooming tools provide a wide range of strand-based modeling tools for this simulation approach, the crucial sag-free initialization functionality remains often ignored. Thus, when the simulation starts, gravity would cause any artistic hairstyle to sag and deform into unintended and undesirable shapes. This paper proposes a novel four-stage sag-free initialization framework to solve stable quasistatic configurations for hybrid strand-based hair dynamic systems. These four stages are split into two global-local pairs. The first one ensures static equilibrium at every Eulerian grid node with additional inequality constraints to prevent stress from exiting the yielding surface. We then derive several associated closed-form solutions in the local stage to compute segment rest lengths, orientations, and particle deformation gradients in parallel. The second global-local step solves along each hair strand to ensure all the bend and twist constraints produce zero net torque on every hair segment, followed by a local step to adjust the rest Darboux vectors to a unit quaternion. We also introduce an essential modification for the Darboux vector to eliminate the ambiguity of the Cosserat rod rest pose in both initialization and simulation. We evaluate our method on a wide range of hairstyles, and our approach can only take a few seconds to minutes to get the rest quasistatic configurations for hundreds of hair strands. Our results show that our method successfully prevents sagging and has minimal impact on the hair motion during simulation.more » « less
-
We propose δ-complete decision procedures for solving satisfiability of nonlinear SMT problems over real numbers that contain universal quantification and a wide range of nonlinear functions. The methods combine interval constraint propagation, counterexample-guided synthesis, and numerical optimization. In particular, we show how to handle the interleaving of numerical and symbolic computation to ensure delta-completeness in quantified reasoning. We demonstrate that the proposed algorithms can handle various challenging global optimization and control synthesis problems that are beyond the reach of existing solvers.more » « less
-
In this paper, we consider iterative methods based on sampling for computing solutions to separable nonlinear inverse problems where the entire dataset cannot be accessed or is not available all-at-once. In such scenarios (e.g., when massive amounts of data exceed memory capabilities or when data is being streamed), solving inverse problems, especially nonlinear ones, can be very challenging. We focus on separable nonlinear problems, where the objective function is nonlinear in one (typically small) set of parameters and linear in another (larger) set of parameters. For the linear problem, we describe a limited-memory sampled Tikhonov method, and for the nonlinear problem, we describe an approach to integrate the limited-memory sampled Tikhonov method within a nonlinear optimization framework. The proposed method is computationally efficient in that it only uses available data at any iteration to update both sets of parameters. Numerical experiments applied to massive super-resolution image reconstruction problems show the power of these methods.more » « less
-
Abstract We present a deterministic global optimization method for nonlinear programming formulations constrained by stiff systems of ordinary differential equation (ODE) initial value problems (IVPs). The examples arise from dynamic optimization problems exhibiting both fast and slow transient phenomena commonly encountered in model‐based systems engineering applications. The proposed approach utilizes unconditionally stable implicit integration methods to reformulate the ODE‐constrained problem into a nonconvex nonlinear program (NLP) with implicit functions embedded. This problem is then solved to global optimality in finite time using a spatial branch‐and‐bound framework utilizing convex/concave relaxations of implicit functions constructed by a method which fully exploits problem sparsity. The algorithms were implemented in the Julia programming language within the EAGO.jl package and demonstrated on five illustrative examples with varying complexity relevant in process systems engineering. The developed methods enable the guaranteed global solution of dynamic optimization problems with stiff ODE–IVPs embedded.more » « less
An official website of the United States government

