skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncertainty in Reconstructing Paleo‐Elevation of the Antarctic Ice Sheet From Temperature‐Sensitive Ice Core Records
Abstract Paleotemperature reconstructions from ice cores are mixed signals of changes in climate and ice‐surface elevation. A common, temperature‐based paleoaltimetry method suggests these signals can be disentangled by comparing two proxy locations with similar climates. The difference between the records is assumed to be due to elevation, which is estimated by scaling the temperature difference by a lapse rate. We investigate the uncertainty associated with this approach using a case study of the Antarctic Ice Sheet during the Last Glacial Maximum. From an ensemble of climate simulations, we extract modeled temperatures at locations of real ice cores. We find uncertainty on the order of hundreds of meters that results from spatial heterogeneity in non‐adiabatic temperature change, which itself stems in part from elevation‐induced atmospheric circulation change. Our findings suggest that caution is needed when interpreting temperature‐based paleoaltimetry results for ice sheets.  more » « less
Award ID(s):
1602435 1841844
PAR ID:
10382824
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
23
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. The last glacial period is characterized by a number of millennial climateevents that have been identified in both Greenland and Antarctic ice coresand that are abrupt in Greenland climate records. The mechanisms governingthis climate variability remain a puzzle that requires a precisesynchronization of ice cores from the two hemispheres to be resolved.Previously, Greenland and Antarctic ice cores have been synchronizedprimarily via their common records of gas concentrations or isotopes fromthe trapped air and via cosmogenic isotopes measured on the ice. In thiswork, we apply ice core volcanic proxies and annual layer counting toidentify large volcanic eruptions that have left a signature in bothGreenland and Antarctica. Generally, no tephra is associated with thoseeruptions in the ice cores, so the source of the eruptions cannot beidentified. Instead, we identify and match sequences of volcanic eruptionswith bipolar distribution of sulfate, i.e. unique patterns of volcanicevents separated by the same number of years at the two poles. Using thisapproach, we pinpoint 82 large bipolar volcanic eruptions throughout thesecond half of the last glacial period (12–60 ka). Thisimproved ice core synchronization is applied to determine the bipolarphasing of abrupt climate change events at decadal-scale precision. Inresponse to Greenland abrupt climatic transitions, we find a response in theAntarctic water isotope signals (δ18O and deuterium excess)that is both more immediate and more abrupt than that found with previousgas-based interpolar synchronizations, providing additional support for ourvolcanic framework. On average, the Antarctic bipolar seesaw climateresponse lags the midpoint of Greenland abrupt δ18O transitionsby 122±24 years. The time difference between Antarctic signals indeuterium excess and δ18O, which likewise informs the timeneeded to propagate the signal as described by the theory of the bipolarseesaw but is less sensitive to synchronization errors, suggests anAntarctic δ18O lag behind Greenland of 152±37 years.These estimates are shorter than the 200 years suggested by earliergas-based synchronizations. As before, we find variations in the timing andduration between the response at different sites and for different eventssuggesting an interaction of oceanic and atmospheric teleconnection patternsas well as internal climate variability. 
    more » « less
  2. Abstract Historical observations of Earth’s climate underpin our knowledge and predictions of climate variability and change. However, the observations are incomplete and uncertain, and existing datasets based on these observations typically do not assimilate observations simultaneously across different components of the climate system, yielding inconsistencies that limit understanding of coupled climate dynamics. Here, we use coupled data assimilation, which synthesizes observational and dynamical constraints across all climate fields simultaneously, to reconstruct globally resolved sea surface temperature (SST), near-surface air temperature (T), sea level pressure (SLP), and sea ice concentration (SIC), over 1850–2023. We use a Kalman filter and forecasts from an efficient emulator, the linear inverse model (LIM), to assimilate observations of SST, landT, marine SLP, and satellite-era SIC. We account for model error by training LIMs on eight CMIP6 models, and we use the LIMs to generate eight independent reanalyses with 200 ensemble members, yielding 1600 total members. Key findings in the tropics include post-1980 trends in the Walker circulation that are consistent with past variability, whereas the tropical SST contrast (the difference between warmer and colder SSTs) shows a distinct strengthening since 1975. El Niño–Southern Oscillation (ENSO) amplitude exhibits substantial low-frequency variability and a local maximum in variance over 1875–1910. In polar regions, we find a muted cooling trend in the Southern Ocean post-1980 and substantial uncertainty. Changes in Antarctic sea ice are relatively small between 1850 and 2000, while Arctic sea ice declines by 0.5 ± 0.1 (1σ) million km2during the 1920s. Significance StatementThe key advance in our reconstruction is that the ocean, atmosphere, and sea ice are dynamically consistent with each other and with observations across all components, thus forming a true climate reanalysis. Existing climate datasets are typically derived separately for each component (e.g., atmosphere, ocean, and sea ice), leading to spurious trends and inconsistencies in coupled climate variability. We use coupled data assimilation to unify observations and coupled dynamics across components. We combine forecasts from climate models with observations from ocean vessels and weather stations to produce monthly state estimates spanning 1850–2023 and a novel quantification of globally resolved uncertainty. This reconstruction provides insights into historical variability and trends while motivating future efforts to reduce uncertainties in the climate record. 
    more » « less
  3. Abstract Understanding deformation in ice shelves is necessary to evaluate the response of ice shelves to thinning. We study microseismicity associated with ice shelf deformation using nine broadband seismographs deployed near a rift on the Ross Ice Shelf. From December 2014 to November 2016, we detect 5,948 icequakes generated by rift deformation. Locations were determined for 2,515 events using a least squares grid‐search and double‐difference algorithms. Ocean swell, infragravity waves, and a significant tsunami arrival do not affect seismicity. Instead, seismicity correlates with tidal phase on diurnal time scales and inversely correlates with air temperature on multiday and seasonal time scales. Spatial variability in tidal elevation tilts the ice shelf, and seismicity is concentrated while the shelf slopes downward toward the ice front. During especially cold periods, thermal stress and embrittlement enhance fracture along the rift. We propose that thermal stress and tidally driven gravitational stress produce rift seismicity with peak activity in the winter. 
    more » « less
  4. Abstract The thermal field within the firn layer on the Greenland Ice Sheet (GrIS) governs meltwater retention processes, firn densification with surface elevation change, and heat transfer from the surface boundary to deep ice. However, there are few observational data to constrain these processes with only sparse in situ temperature time series that do not extend through the full firn depth. Here, we quantify the thermal structure of Western Greenland’s firn column using instrumentation installed in an elevation transect of boreholes extending to 30 and 96 m depths. During the high‐melt summer of 2019, heat gain in the firn layer showed strong elevation dependency, with greater uptake and deeper penetration of heat at lower elevations. The bulk thermal conductivity increased by 15% per 100 m elevation loss due to higher density related to ice layers. Nevertheless, the conductive heat gain remained relatively constant along the transect due to stronger temperature gradients in the near surface firn at higher elevations. The primary driver of heat gain during this high melt summer was latent heat transfer, which increased up to ten‐fold over the transect, growing by 34 MJ m−2per 100 m elevation loss. The deep‐firn temperature gradient beneath the seasonally active layer doubled over a 270‐m elevation drop across the study transect, increasing heat flux from the firn layer into deep ice at lower elevations. Our in situ firn temperature time series offers observational constraints for modeling studies and insights into the future evolution of the percolation zone in a warmer climate. 
    more » « less
  5. null (Ed.)
    Alpine glaciers in the low- and mid-latitudes respond more quickly than large polar ice sheets to changes in temperature, precipitation, cloudiness, humidity, and radiation. Many high-altitude glaciers are monitored by ground observations, aerial photography, and satellite-borne sensors. Regardless of latitude and elevation, nearly all nonpolar glaciers and ice caps are undergoing mass loss, which compromises the records of past climate preserved within them. Almost without exception, the retreat of these ice fields is persistent, and a very important driver is the recent warming of the tropical troposphere and oceans. Here we present data on the decrease in the surface area of four glaciers from low- to mid-latitude mountainous regions: the Andes of Peru and northern Bolivia, equatorial east Africa, equatorial Papua, Indonesia, and the western Tibetan Plateau. Climate records based on oxygen isotopic ratios (δ18O) measured in ice cores drilled from several glaciers in these regions reveal that the records from elevations below ~6000 m above sea level have been substantially modified by seasonal melting and the movement of meltwater through porous upper firn layers. Fortunately, δ18O records recovered from higher altitude sites still contain well-preserved seasonal variations to the surface; however, the projected increase in the rate of atmospheric warming implies that climate records from higher elevation glaciers will eventually also be degraded. A long-term ice core collection program on the Quelccaya ice cap in Peru, Earth’s largest tropical ice cap, illustrates that the deterioration of its climate record is concomitant with the increase in mid-troposphere temperatures. The melting ice and resulting growth of proglacial lakes presents an imminent hazard to nearby communities. The accelerating melting of glaciers, if sustained, ensures the eventual loss of unique and irreplaceable climate histories, as well as profound economic, agricultural, and cultural impacts on local communities. 
    more » « less